

Eolian cannibalism: Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau

A. Licht^{1,2,3,†}, A. Pullen^{1,4}, P. Kapp¹, J. Abell¹, and N. Giesler¹

¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA ²Biodiversity Institute, University of Kansas, Lawrence, Kansas 66045, USA ³Institut für Erd- und Umweltwissenschaften, Potsdam Universität, 14476 Potsdam, Germany ⁴Department of Earth and Environmental Sciences, University of Rochester, Rochester, New York 14627, USA

ABSTRACT

The loess and paleosol sequences of the Chinese Loess Plateau are composed of Quaternary dust, the origin of which has been the subject of considerable debate. Some recent U-Pb geochronological studies of eolian zircons have proposed the existence of two major wind pathways: from the north and northwest, through the Badan Jaran, Tengger, and Mu Us Deserts during interglacials, and from the west, through the Qaidam Basin during glacials. Others have emphasized the importance of Yellow River sediment supply in the Chinese Loess Plateau sediment budget. However, tracking dust source regions through U-Pb dating in a statistically robust manner is particularly complex given the similar age peaks in the age probability distributions of potential source regions in Central Asia. This paper presents 2410 new U-Pb ages of detrital zircons from wind-eroded strata, Quaternary eolian deposits, and modern river sands in central China in order to increase the robustness and the spatial resolution of zircon age distributions in dust source regions. We then propose a new mixture modeling technique to statistically address the contribution of these different sources to the Chinese Loess Plateau sedimentary budget. Our contribution estimates indicate that eolian supply to the Chinese Loess Plateau is dominated (60%-70%) by reworking of Yellow River sediment. Moreover, evidence of Qaidam Basin-sourced zircons (15%-20%) in both loess (glacial) and paleosol (interglacial) layers corroborates the existence of an erosive wind pathway through the Qaidam Basin during glacials and implies that a substantial portion of the interglacial dust is recycled from older glacial loess. We propose that sediment reworking of Yellow River sediment and older loess deposits by wind on the Chinese Loess Plateau homogenized the eolian zircon populations toward a glacial provenance due to higher (2–20 times) dust accumulation rates during glacials. These findings suggest that the Chinese Loess Plateau has evolved as a more dynamic landform than previous thought, where wind deflation, fluvial input, lateral transport, and accumulation of sediment are equally important. These internal reworking effects would then significantly bias the paleoclimatic interpretations based on eolian dust properties of the Chinese Loess Plateau.

INTRODUCTION

The Chinese Loess Plateau (Fig. 1) is mainly composed of eolian dust deposits that are predominantly brought by spring storms sweeping clastic material from the deserts of the Asian interior (Roe, 2009). Though the oldest loess deposits within the southernmost and westernmost Chinese Loess Plateau have been dated to 8 Ma (An et al., 2001), 22-25 Ma (Guo et al., 2002; Qiang et al., 2011), and 41 Ma (Licht et al., 2014), most of the Chinese Loess Plateau is composed of Quaternary loess-paleosol sequences. Loess layers were deposited during glacial periods under a colder and drier Asian climate, whereas paleosol layers developed during warmer and moister interglacial periods with enhanced summer monsoons (An et al., 1990; Porter and An, 1995; Kang et al., 2011, 2013).

Loess deposits consist of a coarse $(12-70 \,\mu\text{m})$ primary fraction, transported via saltation by dust storms in near-surface suspension clouds, and a fine $(1-3 \,\mu\text{m})$ secondary fraction, the origin of which is still controversial, either pedogenic, supplied by upper-level airflow, and/or by adherence to the coarse fraction (Derbyshire et al., 1998; Sun et al., 2006; Stevens and Lu,

2009; Vandenberghe, 2013). In the modern interglacial climate, dust storms originate north and northwest of the Chinese Loess Plateau, in the Gobi Desert, commonly during the breakdown of the Siberian High in Spring (Roe, 2009), and they track across the Badan Jaran, Tengger, and Mu Us Deserts (Wang et al., 2004). These desert areas are thought to be the main source areas for the coarse fraction of the modern dust to the plateau, though the exact locus of dust generation in these regions-piedmont alluvial fans, dried lake basins, or sand dune fields-is widely debated (Pye, 1995; Sun, 2002; Amit et al., 2014). Additionally, recent provenance studies of loess have also highlighted the importance of reworking of local substratum rocks (mostly pre-Quaternary terrestrial sediment) and of fluvial detritus brought by the Yellow River, with headwaters in northeastern Tibet (Fig. 1), in the loess sedimentary budget (Stevens et al., 2013; Che and Li, 2013; Bird et al., 2015; Nie et al., 2015; Kapp et al., 2015).

The geographic origin of pre-Holocene glacial loess is more controversial. Wind-eroded landforms in the Qaidam Basin (Kapp et al., 2011; Rohrmann et al., 2013), U-Pb geochronology of eolian zircons (Pullen et al., 2011), and grain-size data and climate simulations (Vandenberghe et al., 2006) have suggested the existence of a different dust-storm track during glacial periods. These observations point to the loci of source areas located south of the Qilian Shan mountain ranges, in the Qaidam Basin and northern Tibetan Plateau (Fig. 1). This arid region would have been deflated by surface westerly winds, in response to either enhanced penetration of Atlantic westerlies during glacial periods (Vandenberghe et al., 2006), and/or to the shift of the whole midlatitude atmospheric system by ~10° of latitude equatorward (Toggweiler and Russell, 2008; Kapp et al., 2011). In deeper time, this westerly wind pathway would have been favored by a lower-elevation north-

For permission to copy, contact editing@geosociety.org © 2016 Geological Society of America

[†]licht@uw.edu

GSA Bulletin; May/June 2016; v. 128; no. 5/6; p. 944–956; doi: 10.1130/B31375.1; 9 figures; 2 tables; Data Repository item 2016026; published online 8 January 2016.

Figure 1. Schematic map of Central Asia, showing the modern, simplified dust-storm tracks and near-surface wind patterns (red arrows), throughout the (A) Mu Us, (B) Tengger, and (C) Badan Jaran Deserts, and the hypothetical "glacial" dust-storm track (blue arrows), through the Qaidam Basin and across northern and central Tibet (Pullen et al., 2011).

ern Tibetan Plateau until the late Neogene–early Quaternary (Sun et al., 2008; Nie et al., 2014). However, the relative contributions from the Qaidam Basin compared with that of the more proximal desert regions and the Yellow River to the north in the eolian sedimentary budget are poorly constrained, given the complexity of the provenance problem with multiple potential source regions.

Single-grain U-Pb dating of detrital zircons is an efficient and effective technique to differentiate the contribution of discrete sources in sediment samples (Gehrels, 2000). U-Pb analyses of detrital zircon grains produce age distributions that reflect the ages of zircons in the source rocks for the sediment. The presence or absence of a particular age group in a sample is used as a test to determine if a particular source region contributes to the sample (Gehrels et al., 2011). Recent developments in laser-ablation techniques allow for U-Pb analyses of small (<40 µm) zircons in eolian dust and application of this method to Chinese loess deposits (Stevens et al., 2010, 2013; Pullen et al., 2011; Xiao et al., 2012; Che and Li, 2013; Nie et al., 2014; Bird et al., 2015). Tracking Chinese loess dust source regions through U-Pb dating is particularly complex given the similar age peaks in the age probability distributions of western and northern deserts in central China, as well as in individual mountain ranges and terranes (Gehrels et al., 2003, 2011; Stevens et al., 2010). Central Asian age distributions of detrital and igneous rocks are commonly dominated by two major age groups, 225-330 Ma and 380-500 Ma, with two secondary, broader age populations, 750-1000 Ma and 1500-2800 Ma, the relative contribution of which varies regionally (Gehrels et al., 2003; Stevens et al., 2010; Pullen

et al., 2011; Lease et al., 2007, 2012; Weislogel et al., 2010). However, the number (n) of U-Pb ages per published loess sample (commonly n <150) is so far too low to accurately constrain the relative contribution of each age group (see next section; e.g., Andersen, 2005; Pullen et al., 2014). Some workers have been using the multidimensional scaling (MDS) statistical technique of Vermeesch (2013), based on the less n-dependent Kolmogorov-Smirnov (KS) statistic, as a visualization tool to qualitatively estimate the similarity (or dissimilarity) between loess samples and potential sources (Stevens et al., 2013; Che and Li, 2013; Bird et al., 2015). However, this approach does not provide quantitative estimates of the relative contribution of the different dust source regions.

This paper presents new U-Pb ages of detrital zircons from eolian and fluvial deposits as well as from wind-eroded strata in central China, in order to better illuminate the zircon age distributions in potential dust source regions. We then present a new mixture modeling technique that statistically determines the contribution of different sources based on U-Pb data, and we use it to assess the provenance of the Chinese Loess Plateau.

SAMPLES AND METHODS

Sampling Strategy

We first expanded the data set of existing U-Pb ages surrounding the Chinese Loess Plateau with 23 new samples to capture regional variability in eolian sediment source. Surface samples of up to 4 kg were collected from various locations in central China (Fig. 2). In the arid areas north and west of the Chinese Loess Plateau, we sampled modern eolian sand dunes (one sample in the Mu Us Desert, four in the Tengger Desert, and two in the Badan Jaran Desert). We also sampled the tops of yardangs (three samples in the Mu Us Desert and four in the Badan Jaran Desert), streamlined landforms sculpted by windblown sand and composed of Pliocene-Quaternary to Cretaceous sedimentary bedrock. In the western, deflationary, and bedrock-floored Qaidam Basin, we sampled Miocene-Pliocene strata that have been sculpted into yardangs (three samples, which were previously assessed using cosmogenic nuclides by Rohrmann et al., 2013). To represent the average influx of sediment from northeast Tibet, we sampled modern fluvial deposits from the Yellow River at the western edge of the Mu Us Desert (one sample). We also determined new U-Pb ages on zircons from paleosol layers in the Heimugou section (layers S0, S1, S9, S15 and S22; after Porter, 2001) of the central Chinese Loess Plateau.

We determined U-Pb ages on ~70 to ~370 detrital zircons per sample. In total, we increased the existing data set of Central Asian U-Pb ages by 2410 ages from 23 samples. The nature, location, and number of U-Pb ages per sample used in this study are provided in Table 1, with detailed U-Pb results given in Table DR1.¹

Analytical Methods

Zircon crystals were extracted from sediment samples by traditional methods of heavy mineral separation at the Arizona LaserChron

¹GSA Data Repository item 2016026, U-Pb age distributions of samples, is available at http://www .geosociety.org/pubs/ft2016.htm or by request to editing@geosociety.org.

Figure 2. Map of central China displaying the four main potential source provinces for coarse eolian dust and the samples used in this study (nature of the samples detailed in Table 1). TD—Tengger Desert; BJD—Badan Jaran Desert; HS—Heimugou Section.

center (e.g., Gehrels et al., 2011). To minimize the hydraulic sorting grain-size effects and thus loss of fine-grained zircons in eolian dust samples, we used the recently developed ultrasonic separation technique of Hoke et al. (2014). Isotope ratios were measured using a Nu Plasma high-resolution (HR) multicollector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) and a Thermo Element 2 single-collector (SC) ICP-MS coupled to a Photon Machines Analyte G2 193 nm excimer laser. Coarser-grained samples from the dust source areas were ablated using a 30 µm laser beam diameter at 7.0 mJ (constant energy) with 94% laser energy at 7 Hz for the Nu Plasma and 8 Hz for the Element 2. Finer-grained samples (i.e., loess-paleosol) were analyzed using a 12 µm beam diameter with same laser fluence and were analyzed on the Nu Plasma. Initial Pb was corrected using the 204Pb measurement and assuming an initial Pb composition from Stacey and Kramers (1975; see Table DR1 for more detail [footnote 1]). Note that the analyzed dust zircons have a minimum diameter of 12 µm due to ICP-MS collector limitations, ion yields, and the Pb and U concentrations of the zircons. This resolution is nevertheless better than for previous eolian dust provenance studies, which commonly used laser spots >25 µm (e.g., Che and Li, 2013; Nie et al., 2014). Accordingly, the results presented in this study are valid for the eolian dust coarse fraction only. The origin of the finer fraction is beyond the focus of this study but has been discussed elsewhere (e.g., Derbyshire et al., 1998; Sun et al., 2006; Stevens and Lu, 2009).

Assessing Sample-Size Effects

Provenance studies based on U-Pb age distributions of detrital zircons usually aim to identify all age components in samples of unknown provenance and compare them with the age components of known sources (Gehrels, 2000). To that end, 100–300 zircon ages per sample are commonly considered as a reasonable range to minimize the probability of failing to identify age components at low analytical cost (Vermeesch, 2004; Andersen, 2005).

The provenance problem that we face here is different, because all of the dominant age components are to some extent shared by the known eolian sources. Age distributions of the potential sources regions mainly differ in the relative contribution of four major age components: 225-330 Ma; 380-500 Ma; 750-1000 Ma; and 1500-2800 Ma (e.g., Gehrels et al., 2003; Stevens et al., 2010; Pullen et al., 2011; Lease et al., 2007, 2012; Weislogel et al., 2010). Previous provenance studies have attempted to distinguish among these contributions by comparing the relative magnitude of these age peaks in the age distribution of loess samples (Xiao et al., 2012; Nie et al., 2014). Although n = 100-300ages per sample are sufficient to ensure that each age component is found in the age distributions, these numbers are too low to constrain the relative contribution of each age peak (Pullen et al., 2014). As noted by Pullen et al. (2014), there is no minimum fixed number n that would completely stabilize the shape of the age distributions, but rather a range (n = 300-1000), depending on the number of age groups present. A good example of the uncertainty introduced by small *n* is shown in Figure 3. Subsamples made of randomly picked n = 100 ages from a bigger sample of n = 928 ages yield peak magnitudes that are different from each other as well as that of the larger-n age population. Previous loess provenance studies comparing age peak magnitudes used samples with n commonly <300 and have thus overinterpreted peak magnitude differences as real source differences, when in fact they may simply be due to scatter from the effects of subsampling. The same subsampling uncertainty also affects the MDS statistical technique of Vermeesch (2013) when applied to the loess provenance problem. The MDS produces a "map" of points, representing samples, on which the "distance" between points is related to the dissimilarity between samples, quantified by the KS statistic (Vermeesch and Garzanti, 2015). However, the KS statistic between two samples is based on the difference in their empirical distribution functions, the shape of which is controlled by subsampling as well (Massey, 1951). This uncertainty is illustrated in Figure 4. On the MDS plot, the random subsamples are widely scattered around the bigger sample, with some of them falling next to the Qaidam Basin age compilation, whereas others do not. Though MDS plots are an elegant way to visualize group differences when dealing with a huge number of samples, the distance between individual samples is influenced by subsampling variability and does not allow a quantitative estimate of the mismatch.

The age distributions of the 23 new individual samples are plotted in Figure 5. For all of them, main age peaks fit within the range of age peaks previously mentioned to be found in central China. However, the amplitude of age peaks in these individual samples, with nbetween 70 and 370, is expected to approximate but not perfectly characterize the "true" distribution of ages because of subsampling effects. To that end, the visualization and analysis of each sample age distribution are thus insufficient for solving our provenance problem. To minimize the uncertainty introduced by subsampling, our first step was to group individual samples into geographical provinces such that each province had a sufficiently large n number to increase the statistical significance of each age peak contribution (n between 800 and 2500). We divided the potential dust-source regions into four provenance provinces (Fig. 2):

(1) the sandy Mu Us Desert, located directly to the north of the Central Loess Plateau;

(2) the central sand deserts, including both the Tengger and Badan Jaran Deserts, located to the northwest of the Chinese Loess Plateau,

Sample name n Nature Constraint 1320/BC01 4 Fold nature, Constrail Octop Basin 39 9890 108 1022 This paper 1320/BC01 94 Top of yarding (Mesczic sandstrone) 38 972 107.343 This paper 1320/BC01 94 Top of yarding (Mesczic sandstrone) 38 972 107.343 This paper 1320/BC01 94 Top of yarding (Mesczic sandstrone) 38 972 107.343 This paper 1320/BC01 98 Existen dure, seatern Mu Us 39.6723 Silvense et al. (2013) MD06 198 Existen dure, seatern Mu Us 39.622 Silvense et al. (2013) MD07 80 Existen dure, seatern Mu Us 37.706 108.488 Silvense et al. (2013) MD04 74 Existen dure, seatern Mu Us 37.776 108.488 Silvense et al. (2013) MD03 110 Custeners y seat dure, watern Mu Us 37.776 108.488 Silvense et al. (2013) MD03 112 Existen watern watern Mu Us 37.776 108.488 Silvense et al. (2013)						
Discussor 1 Control 1 <th1< th=""> 1 1 <</th1<>	Sample name	n	Naturo	Coord	Inates	- Reference
Biolumeter 94 Exclusine dume. Control Crotes Basin 58 69836 108 1621 This paper SCOSMOD2 92 Top of yardang (Messocia sandstone) 58 774 107 343 This paper SICCSMOD2 92 Top of yardang (Messocia sandstone) 58 774 107 343 This paper SICCSMOD2 90 Top of yardang (Messocia sandstone) 58 773 108 511 107 849 This paper SICCSMOD2 93 Existing Messocia colina sandstone, eastern Mu Us 57 5621 SIVerms et al. (2013) M040 119 Messocia colina sandstone, eastern Mu Us 57 706 SIVerms et al. (2013) M050 113 Guaramay and dura, western Mu Us 57 706 SIVerms et al. (2013) M051 112 Existin dura, eastern Mu Us 38 477 108 763 SIVerems et al. (2013) M051 112 Existin dura, eastern Mu Us 38 477 108 763 SIVerms et al. (2013) M052 117 Existin dura, eastern Mu Us 38 477 108 763 SIVerms et al. (2013) M050 112 Existin dura, easterin Mu			Nature	(11)	()	nelelelice
102.053MOn B4 Top of yestering [Metoole sendiame) 38.9746 107.0586 The paper 102.054MOQ2 B2 Top of yestering [Metoole sendiame) 38.1011 107.8649 The paper 13CCMMOQ3 B0 Top of yestering [Metoole sendiame) 38.1011 107.8649 The paper 13CCMMOQ3 B0 Top of yestering [Metoole sendiame) 38.1011 107.8649 The paper 13CCMMOQ3 B0 Top of yestering [Metoole sendiame) 38.1011 107.8649 The paper MD08 18 Metoole sendiame (Metoole sendiame) 38.173 108.571 Storems et al. (2013) MD06 58 Metoole sendiame (Mu Lus 37.722 108.473 Storems et al. (2013) MD01 152 Existering function (Lus existering Mu Lus 38.136 109.273 Storems et al. (2013) MD01 152 Existering function (Lus existering Mu Lus 38.136 109.793 Storems et al. (2013) MD02 Existering function (Lus existering Mu Lus 38.136 109.723 Storems et al. (2013) MD03 130		04	Folian duna, Control Ordea Basin	20,00200	100 10001	This paper
12:02:03:00:00: 92 The of yoursele (Maccolic and Storme) 35:872 107:333 This paper 13:02:03:00:00: 90 Top of yoursele (Maccolic and Storme) 35:1011 107:843 This paper MD10 98 Existing during (Maccolic and Storme) 35:1011 107:844 This paper MD10 98 Existing during (Maccolic and Storme) 35:4211 107:291 Storme of al. (2013) MD10 198 Existing during (Maccolic and Storme) 35:628 109:6644 Storme of al. (2013) MD05 115 Collatemary fluxial deposite, eastern Mu Us 37:8871 108:842 Storme of al. (2013) MD04 17 Existing during, eastern Mu Us 37:877 108:483 Storme of al. (2013) MD01 152 Existing during, eastern Mu Us 38:477 108:783 Storme of al. (2013) MD01 152 Existing during, eastern Mu Us 38:477 108:783 Storme of al. (2013) MD01 152 Existing during, eastern Mu Us 38:477 108:783 Storme of al. (2013) MD02	13DUNE01	94	Top of verdang (Menozoia conditions)	30.90309	100.10321	This paper
13COBMO05 00 Top of yarding (Mescacic sandborne) 381 (11) 107.2840 This paper MD06 18 Excland num, vesterm Mu Us 33.4923 107.227 Stevens et al. (2013) MD06 18 Mescolic oxion anatosine, eastern Mu Us 33.4933 105.715 Stevens et al. (2013) MD06 18 Execution constraintsone, eastern Mu Us 37.96871 108.822 Stevens et al. (2013) MD06 17 Quatemary flowal deposite, settern Mu Us 37.766 108.488 Stevens et al. (2013) MD06 18 Colland dum, eastern Mu Us 37.766 108.488 Stevens et al. (2013) MD01 112 Exolina dum, eastern Mu Us 37.726 108.488 Stevens et al. (2013) MD03 112 Exolina dum, eastern Mu Us 37.726 108.488 Stevens et al. (2013) MD04 74 Exolina dum, fangager Desert 40.2564 This paper 115 130UHE05 88 Exolina dum, fangager Desert 39.2672 103.2386 This paper 130VAB01 230 Fuvalas a	130031001	04	Top of yardang (Mesozoic sandstone)	30.9740	107.3300	This paper
M010 39 Explan dure, weitern Mu Lis 32 /2639 1107 /291 Streams at L(2013) M006 119 Mesozoi e colina namotisone, assern Mu Lis 33.673 108.5715 Stevens et al. (2013) M007 38 Eolina nume, vestern Mu Lis 33.673 108.5715 Stevens et al. (2013) M006 18 Mesozoi e colina namotisone, assern Mu Lis 37.706 108.488 Stevens et al. (2013) M006 17 Eolina nume, vestern Mu Lis 37.726 108.488 Stevens et al. (2013) M002 117 Eolina nume, vestern Mu Lis 37.726 108.488 Stevens et al. (2013) M010 152 Eolina nume, vestern Mu Lis 38.126 100.778 Stevens et al. (2013) M010 127 Eolina nume, restern Mu Lis 38.126 100.7233 Tis paper 130/UNE05 81 Eolina nume, Tenger Desert 40.07233 103.92384 This paper 130/UNE05 91 Eolina num, Tenger Desert 38.8974 Tis paper 100.8745 130/UNE05 91 Eolina num, Yaratan	13COSM002	92	Top of vardang (Mesozoic sandstone)	30.972	107.545	This paper
MAD9 108 Exclusion Line western Mu Lis 324.423 107.227 Stevens et al. (2013) MD07 93 Exclusion Long exactions, eastern Mu Lis 33.6528 105.65151 Stevens et al. (2013) MD06 58 Mescocio evolus anatohone, eastern Mu Lis 37.092 108.77 Stevens et al. (2013) MD06 15 Cuaternary Muvial deposite, eastern Mu Lis 37.097 108.822 Stevens et al. (2013) MD07 13 Cuaternary Muvial deposite, eastern Mu Lis 37.097 107.738 Stevens et al. (2013) MD01 152 Exclusion Auro, eastern Mu Lis 38.156 103.791 Stevens et al. (2010) Central desarts 152 Exclusion Auro, Tengger Desert 40.07233 103.8238 This paper 130/WE06 81 Exclusion Auro, Tengger Desert 38.4677 103.82494 96.7546 This paper 130/WE06 91 Exclusion Auro, Tengger Desert 38.4677 103.771 This paper 130/WE06 91 Exclusion Auro, Tengger Desert 38.269 10.6778 Stevenet et al. (2010)	MD10	90	Folian duna, western Mullis	37 0220	107.0049	Stovens et al. (2012)
MAD3 119 Mesozia colum sandatone, eastern Mu Us 38.573 110.5 515 Stremes et al. (2013) MD05 58 Mesozia colum sandatone, eastern Mu Us 37.962 108.87 Stevens et al. (2013) MD05 15 Outsermay fluid legosite, eastern Mu Us 37.962 108.82 Stevens et al. (2013) MD05 17 Exitemany fluid legosite, eastern Mu Us 37.962 108.428 Stevens et al. (2013) MD06 17 Exitemany fluid legosite, eastern Mu Us 37.972 108.428 Stevens et al. (2013) MD01 152 Exitema fluid legosite and Mu Us 38.156 100.711 Stevens et al. (2010) MD01 152 Exitem Alue, eastern Mu Us 38.158 103.2838 This paper 130UHE05 88 Exitem Alue, Tengger Desert 40.5584 This paper 130UHE05 96 Exitem Alue, Tengger Desert 38.2829 105.478 This paper 130UHE05 96 Exitem Alue, Andon Alan Desert 40.5721 103.483 This paper 130UHE05 96 Exitem Alue, Andon Ala	MD00	90	Eolian dune, western Mullis	37.9239	107.991	Stevens et al. (2013)
MAD9 Image Section (use, eastern Mu Us Section (use, eastern Mu Use) Section (use, eastern	MD09	110	Mesozoic eolian sandstone, eastern Mullis	30.4923	107.227	Stevens et al. (2013)
Mixed Bit Mesozoic evaluations (seatem Mu Us 37.982 108.822 Stevens et al. (2013) MOd5 T15 Quatemany Nuvia deposits, astern Mu Us 37.727 108.822 Stevens et al. (2013) MOd3 T13 Quatemany Nuvia deposits, astern Mu Us 37.722 108.488 Stevens et al. (2013) MOd2 T17 Existin dure, eastern Mu Us 38.477 108.328 Stevens et al. (2013) MOd3 T12 Existin dure, eastern Mu Us 38.477 103.9238 Tits paper Stevens et al. (2010) T15 Existin dure, eastern Mu Us 38.168 103.9238 Tits paper Tits paper Tits paper Tits paper Tits paper Tits paper Tits Paper Statistin Control (Tits paper) Statistin Control (Tits paper) Tits paper Tits Paper Statistin Control (Tits paper) Statistin Control (Tits paper) Statistin Control (Tits paper) Tits Paper Statistin Control (Tits paper) Statistin Control (Tits paper) Statistin Control (Tits paper) Tits Paper Tits paper Statistin Control (Tits paper) Statistin	MD07	02	Folian duna, aastarn Mu Lla	39.6539	100.5151	Stevens et al. (2013)
MEDG 115 Constrainty fluxial deposits, eastern Mu Us 37.706 108.828 Stevens et al. (2013) MD03 113 Culaternary sand dure, western Mu Us 37.706 108.848 Stevens et al. (2013) MD03 113 Culaternary sand dure, western Mu Us 31.706 108.703 Stevens et al. (2013) MD01 112 Exilian dure, eastern Mu Us 31.706 109.723 Stevens et al. (2013) MD01 112 Exilian dure, Tengger Desert 40.5724 This paper T30UNE05 81 Exilian dure, Tengger Desert 38.8072 102.82864 This paper T01 86 Exilian dure, Tengger Desert 38.8072 103.42864 This paper T01 86 Exilian dure, Tengger Desert 38.7441 106.5782 This paper T01 86 Exilian dure, Tengger Desert 38.7441 106.5782 This paper T03 23.0 Fluvial sandstone, Russhi Hiver 40.4 99.6 Che and Li (2013) T01 86 Exilian dure, matering National Park 43.57707	MD06	58	Mesozoic eolian sandstone, eastern Mullis	37 002	108.87	Stevens et al. (2013)
MD04 '7 Exilan dure, western Mu, Us '27,06' 108,488 Stevens et al. (2013) MD02 117 Exilan dure, eastern Mu, Us '37,722 108,488 Stevens et al. (2013) MD02 117 Exilan dure, eastern Mu, Us '37,722 108,488 Stevens et al. (2013) MD01 152 Exilan dure, eastern Mu, Us '38,174 108,3238 This paper 130ME03 81 Exilan dure, Tengger Desert 40,07233 103,32384 This paper 130ME06 91 Exilan dure, Tengger Desert 38,282 103,42384 This paper 130ME06 91 Exilan dure, Tengger Desert 38,589 105,478 Stevens et al. (2013) 130VE06 91 Exilan dure, Tengger Desert 38,389 105,477 This paper 130VE07 82 Exilan dure, Tengger Desert 39,31771 74,889 This paper 130VE07 94 Exilan dure, Arranger Robel Hilver 39,310771 This paper 130VE07 94 Exilan dure, Arrange Robel Hilver 39,310771 This pap	MD05	115	Quaternary fluvial deposite eastern Mullis	37 0871	108.822	Stevens et al. (2013)
ME03 113 Constraint sector Streams et al. (2013) MD01 152 Expland une, eastern Mu Us 38.477 108.783 Streams et al. (2013) MD01 152 Expland une, eastern Mu Us 38.177 108.783 Streams et al. (2013) MD01 152 Expland une, eastern Mu Us 38.177 108.783 Streams et al. (2013) 130UNE05 81 Expland une, Tengger Desert 39.28238 102.26646 This paper 130UNE05 88 Expland une, Tengger Desert 39.88072 102.26646 This paper 130UNE05 88 Expland stormstrong toolfist (me Goul-Matt Mountains 41.4 96.6 Che and Li (2013) 130UNE07 235 Fluvial stormstrong Notional Park 40.55949 93.10771 This paper 130UNE07 94 Expland une, Yardang National Park 40.55949 93.10771 This paper 130UNE07 94 Expland une, Yardang National Park 40.55429 93.10767 This paper 130UNE07 94 Expland une, Yardang National Park 40.57542	MD04	74	Eolian dune, western Mullis	37 706	108/88	Stevens et al. (2013)
Mixed 117 Exclan dure, eastern Mu Us 38,477 108,723 Stevens et al. (2010) Cantral desents 5 Stevens et al. (2010) 5 Stevens et al. (2010) 137ARD01 82 Top of yardang, Badan Jiana Desert 40,6733 910,52938 This paper 137ARD01 82 Top of yardang, Badan Jiana Desert 40,6634 98,754 This paper 130VH505 91 Eolian dure, Tengger Desert 38,80672 102,8445 This paper 130VH506 91 Eolian dure, Tengger Desert 38,838 106,474 This paper 130VH507 86 Eolian dure, Tengger Desert 40,4854 This paper 130VH502 235 Flowial sandbione, forming Desert 40,3744 105,777 This paper 130UH502 235 Eolian dure, Wardang National Park 39,37141 98,3589 This paper 130UH502 90 Eolian dure, Wardang National Park 39,31441 105,775 This paper 130UN507 84 Eolian dure, Wardang National Park 39,314667 Pulien et al. (2	MD03	113	Quaternary sand dune, western Mullis	37 722	108.488	Stevens et al. (2013)
MED1 152 Explan dune, eastern Mu Us 38.136 109.791 Stevens et al. (2010) Cantral deserts Explan dune, Tengger Desert 40.5723 109.791 Stevens et al. (2017) 13DUNE05 28 Totel dune, Tengger Desert 40.5723 109.791 Stevens et al. (2010) 13DUNE05 28 Totel dune, Tengger Desert 40.8243 109.7424 Thip paper 13DVNE05 91 Explan dune, Tengger Desert 40.48544 94.63945 This paper 13VAD02 66 Top of yardang, Bardan Jaran Desert 40.44544 94.63945 This paper 130VNE02 235 Fluvial sandstone, fluxel Haver 40.4 96.6 Che and Li (2013) 130UNE02 82 Eolian dune, Tengger Desert 39.37441 106.5778 This paper' 130UNE02 84 Top of yardang PleicoeneQuaternary sandstone) 40.23422 39.1078 This paper' 130UNE02 84 Top of yardang (PleicoeneQuaternary sandstone) 40.344667 Pulien et al. (2011) 130UNE02 90 Pop of yardang (PleicoeneQuater	MD02	117	Eolian dune, eastern Mu Us	38 477	108 763	Stevens et al. (2013)
Cartral description Cartral description Cartral description Cartral description 130UNE03 81 Eolian dure, Tengger Desert 40.3524 103.92398 This paper 130UNE05 88 Eolian dure, Tengger Desert 32.2257 103.92398 This paper 130UNE05 88 Eolian dure, Tengger Desert 32.8257 103.92398 This paper 130UNE05 86 Eolian dure, Tengger Desert 38.898 106.478 Stevens et al. (2010) 130UNE07 94 Eolian dure, Tengger Desert 39.374.11 105.578 This paper' 130UNE07 94 Eolian dure, Yardang National Park 40.85499 39.1774.11 105.578 This paper' 130UNE07 94 Eolian dure, Yardang National Park 40.35422 83.1737 This paper' 130UNE07 94 Eolian dure, Yardang National Park 40.34707 81.3080 This paper' 130UNE07 94 Eolian dure, Yardang National Park 39.741667 Pullen et al. (2011) 130UNE07 94 Eolian dure, Tengger Desert 40.47	MD01	152	Folian dune, eastern Mu Us	38 136	109 791	Stevens et al. (2010)
USE Edia duna, Tengger Desert 40.7233 10.32288 This paper 13VARD01 82 Top dy starding, Batan Jaran Desert 40.5723 10.32288 This paper 13DUNE05 88 Ecilan dune, Tengger Desert 38.28238 102.38645 This paper 13DUNE05 66 Top dy starding, Batan Jaran Desert 40.48549 94.63494 This paper 13VARD02 66 Top dy starding, Batan Jaran Desert 40.48549 94.63494 This paper 130UNE05 82 Ecilan dune, Tengger Desert 38.26730 This paper' 130UNE07 84 Ecilan dune, Tengger Desert 30.5759 10.5778 This paper' 130UNE07 94 Ecilan dune, Tengger Desert 30.5759 10.5778 This paper' 130UNE07 84 Top of yarding (Piocene-Quaternary anatotione) 40.4779 93.13003 This paper' 130UNE07 84 Top of yarding (Piocene-Quaternary anatotione) 40.7779 93.13003 This paper' 130UNE02 90 Piocene-Quaternary lacustrine 38.3 93.416667	Central deserts			00.100	1001101	
137XARD01 22 Top of yardang, Batan Jaran Desert 40,5694 96,75464 This paper 13DUNE06 81 Eclian dune, Tengger Desert 39,2838 102,6943 This paper 13DUNE06 91 Eclian dune, Tengger Desert 38,80672 102,84454 94,63945 13DUNE07 66 Eclian dune, Tengger Desert 38,589 105,478 Stevens et al. (2013) V302 235 Fluvais andstone, Rothill for the Gobi-Altai Mountains 41,7 103,1 Che and Li (2013) 13DUNE07 84 Eclian dune, Tengger Desert 39,7441 105,5782 This paper* 13DUNE07 94 Eclian dune, Tengger Desert 39,37441 105,5782 This paper* 13DUNE07 94 Eclian dune, Tengger Desert 33,37441 105,5782 This paper* 13DUNE07 94 Eclian dune, Tengger Desert 39,37441 105,5782 This paper* 13DUNE07 94 Eclian dune, Tengger Desert 39,37441 105,5782 This paper 13DUNE07 94 Eclian dune, Tengger Desert	13DLINE03	81	Folian dune, Tengger Desert	40 07233	103 92398	This paper
13DUNESD 88 Eclian dune, Tangger Desert 39.28238 102.84942 This paper 13DVNESD 66 Top of yardang, Badan Jaran Desert 40.48549 94.8494 54.8494 This paper 13VARD02 66 Top of yardang, Badan Jaran Desert 40.48549 94.85945 This paper 130UNESD Elaina due, Tangger Desert 39.37411 105.478 Stevens et al. (2010) 130UNESD* 82 Eolian due, Tangger Desert 39.37411 105.8782 This paper* 130UNESD* 94 Eolian due, Yardang National Park 40.35399 93.10771 This paper* 130UNESD* 90 Eolian due, Yardang National Park 40.35322 93.10803 This paper* 130UNESD* 90 Eolian due, Tardang National Park 40.37707 93.18003 This paper* 130UNESD* 90 Eolian due, Tardang National Park 40.37707 93.18003 This paper* 130UNESD* 90 Eolian due, Tardang National Park 40.47707 93.18003 This paper 130UNESD* 90 Delian d	13YARD01	82	Top of vardang, Badan Jaran Desert	40 5694	96 7546	This paper
1320UR620 91 Eclian dune, Tengger Desert 38.8072 102.39445 This paper 133ARD02 66 Top of yardang, Badan Jaran Desert 40.8549 9.48345 9.46345 15.9445 TD1 86 Eolan dune, Tengger Desert 38.589 105.478 Stevens et al. (2013) RSH01 230 Fluvais aandstone, Ruoshi River 40.47 99.6 Che and Li (2013) 13DUNE07* 94 Eclian dune, Tengger Desert 39.37411 105.6782 This paper* 13DUNE07* 94 Eclian dune, Yardang National Park 40.35329 93.10771 This paper* 13COSMO07* 84 Top of yardang (Plicoene-Quaternary andstone) 40.5322 93.10758 This paper* 13COSMO07* 84 Outernary alluvium 38.3 93.416667 Pulien et al. (2011) MT226D20600 90 Pliconen-Quaternary lacustrine 38.3 93.416667 Pulien et al. (2011) MT226D20600 92 Pliconen-Quaternary lacustrine 38.3 93.416667 Pulien et al. (2011) MT226D24060 93 <td></td> <td>88</td> <td>Folian dune, Tengger Desert</td> <td>30 28238</td> <td>102 60/02</td> <td>This paper</td>		88	Folian dune, Tengger Desert	30 28238	102 60/02	This paper
13YAPD02 66 Top of yardang, Badan Jatan Desert 40.48549 VelaS345 This paper YED2 235 Fluvial sandstone, floothills of the GobI-Atlai Mountains 41.7 103.1 Che and Li (2013) YED2 235 Fluvial sandstone, Ruoch INever 40.4 96.6 Che and Li (2013) 13DUNE02* 82 Eolian dune, Yardang National Park 40.35599 93.10717 This paper* 13DUNE02* 82 Eolian dune, Yardang National Park 40.35422 93.10758 This paper* 13DUNE02* 83 Top of yardang (Pilocene-Quaternary sandstone) 40.47707 93.18605 This paper* 13DOSMOO9* 83 Top of yardang (Pilocene-Quaternary sandstone) 40.47707 93.18607 Pullen et al. (2011) MT226D20400 90 Pilocene-Quaternary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D20400 80 Pilocene-Quaternary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D20400 80 Pilocene-Quaternary lacustrine 38.3 83.416667 Pullen et al. (2011)	13DUNE06	00	Eolian dune, Tengger Desert	38 80672	102.09492	This paper
T01 D54 Expland June, Tangger Desert 38.589 105.478 Stevens et al. (2010) YG2 255 Fluvial sandstone, Rochils of the Gobi-Atal Mountains 40.4 99.6 Che and Li (2013) RSH01 230 Fluvial sandstone, Rochils of the Gobi-Atal Mountains 40.4 99.6 Che and Li (2013) T3DUNEC2* 82 Eolian dune, Yardang National Park 40.53599 This paper* T3DUNEC0* 94 Eolian dune, Yardang National Park 40.53422 93.10757 This paper* T3COSMO07* 84 Top of yardang (Plicoene-Ousternary sandstone) 40.53422 93.10757 This paper* Caldam Basin Top of yardang (Plicoene-Ousternary sandstone) 40.7707 93.13603 This paper* Caldam Basin Tito Paper 83.3 93.416667 Pulien et al. (2011) MT226D20400 92 Plicoene-Ousternary lacustrine 83.3 93.416667 Pulien et al. (2011) MT226D20400 93 Plicoene-Ousternary lacustrine 83.3 93.416667 Pulien et al. (2011) MT_97D202040 93 Plicoen		66	Top of vardang, Badan, Jaran Desert	10 48549	9/ 639/5	This paper
Vide 235 Fluidi amode trange for thills of the Gobi-Altai Mountains 41.7 103.1 Che and L (2013) RBH01 230 Fluidi amode trange for thills of the Gobi-Altai Mountains 41.7 103.1 Che and L (2013) 13DUNED2* 82 Eolian dune, Yardang National Park 49.35359 This paper* 13DUNE0* 90 Eolian dune, Yardang National Park 99.71717 91.45589 This paper* 13DUNE0* 90 Eolian dune, Yardang National Park 99.7177 93.13603 This paper* 13DUNE0* 83 Top of yardang (Plicoene-Quaternary sandstone) 40.47707 93.13603 This paper* 13COSMC09* 83 Top of yardang (Plicoene-Quaternary sandstone) 40.47707 93.13603 This paper 13COSMC09* 83 Plicoene-Quaternary lacustime 38.3 93.416667 Pulien et al. (2011) MT226D2400 92 Plicoene-Quaternary lacustime 38.3 93.416667 Pulien et al. (2011) MT226D2400 83 Plicoene-Quaternary lacustime 38.3 93.416667 Pulien et al. (2011)		86	Folian duna, Tanggar Desert	29 590	105 479	Stavans at al. (2010)
Action 230 Fluvial sandstone, Fluves'i Briver 40.4 99.6 Offee and Lig(2013) 13DUNE07' 82 Exilan dune, Tengger Desert 39.37441 106.5782 This paper* 13DUNE07' 94 Exilan dune, Yandang National Park 40.53599 39.10771 This paper* 13DUNE07' 84 Top of yardang (Picosne-Ouaternary sandstone) 40.53429 33.13685 This paper* 13COSM009' 83 Top of yardang (Picosne-Ouaternary sandstone) 40.54707 93.136667 Fullen et al. (2011) MT226D2060 90 Pilocene-Ouaternary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D20408 92 Pilocene-Ouaternary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D20409 93 Pilocene-Ouaternary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D2040 86 Top of yardang 37.9667 92.761 This paper (see also Rohrmann et al., 2013) MT_97D20400 93 Pilocene-Ouaternary lacustrine 38.319.416667 Pullen et al. (2011) 4-	VG02	235	Eluvial candetone, footbills of the Gobi-Altai Mountains	11 7	103.470	Che and Li (2013)
100UNEQ? 52 Estilan duns, Tangger Desert 33.7441 106.5782 This paper 130UNEO? 90 Estilan duns, Yaratang National Park, 40.55599 93.10747 This paper* 130UNEO? 84 Top of yardang National Park, 40.55599 93.10758 This paper* 130UNEO? 84 Top of yardang (PiloceneQuaternary sandstone) 40.53422 93.10768 This paper* 130DAMED? 84 Top of yardang (PiloceneQuaternary lacustrine) 30.374667 Pullen et al. (2011) 130EADCAGO 92 PiloceneQuaternary lacustrine 38.3 93.416667 Pullen et al. (2011) 17226D2040 86 Pilocene-Quaternary lacustrine 38.3 93.416667 Pullen et al. (2011) 1797D2406 93 Pilocene-Quaternary lacustrine 38.3 93.416667 Pullen et al. (2011) 4-17-09-1 90 Top of yardang 37.9667 92.7961 This paper (see also Rohrmann et al., 2013) 4-27-09-1 10 Top of yardang 39.40816 106.7966 This paper (see also Rohrmann et al., 2013) 1302LUNOVI 367 Rilver	RSH01	230	Fluvial sandstone, Ruoshi River	40.4	99.6	Che and Li (2013)
13DUNEO7 94 Eolian dure, Yardang National Park 40.5359 93.1077 This paper' 13DUNEO7 94 Top of yardang (Pilocene-Quatemary sandstone) 40.53422 93.1078 This paper' 13COSMO07* 83 Top of yardang (Pilocene-Quatemary sandstone) 40.53422 93.1078 This paper' 02GAMDA94 83 Ousternary alluvium 38.3 93.416667 Pullen et al. (2011) MT226D24060 92 Pilocene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D24060 92 Pilocene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D24060 93 Pilocene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) 417-09-1 90 Top of yardang 37.9667 92.7961 This paper (see also Rohmann et al., 2013) 4-17-09-1 90 Top of yardang 38.341667 Pullen et al. (2011) 4-17-09-1 10 Top of yardang 39.40867 This paper (see also Rohmann et al., 2013) 1302H2H2H0W Ner Top of ya	13DUNE02*	82	Folian dune, Tengger Desert	39 37441	106 5782	This naner*
13DUREOr 00 Ebland une, Yardang National Park 33 717 94 32550 This paper 13COSMOOP 84 Top of yardang (PliceneOuatemary sandstone) 40 53422 93 10758 This paper 13COSMOOP 84 Top of yardang (PliceneOuatemary sandstone) 40 53422 93 10758 This paper Caidam Basin Top of yardang (PliceneOuatemary sandstone) 40 53422 93 10667 Pullen et al. (2011) MT226D26090 90 PliceneQuatemary lacustrine 38.3 93 416667 Pullen et al. (2011) MT226D20040 86 PliceneQuatemary lacustrine 38.3 93 416667 Pullen et al. (2011) MT_97D2060 93 PliceneQuatemary lacustrine 38.3 93 416667 Pullen et al. (2011) 4-18-09-1 86 Top of yardang 37.9667 92.7961 This paper (see also Rohrmann et al., 2013) 4-17-09-1 90 Top of yardang 37.9667 92.7961 This paper (see also Rohrmann et al., 2013) Northeast Tibet, Yellow River 1 Top of yardang 37.96717 02.22583 Nee et al. (2015)	13DUNE07*	94	Eolian dune, Vardang National Park	40 53599	93 10771	This paper This naner*
1300 SMCOV_ 1300 SM	13DUNE09*	90	Eolian dune, Vardang National Park	39 71717	94 35859	This paper This naner*
Naccost Solution	13COSM007*	84	Top of vardang (Pliocene–Quaternary sandstone)	40 53422	93 10758	This paper*
Caidam Basin Control Contro Control <thcontrol< th=""></thcontrol<>	13COSMO09*	83	Top of yardang (Pliocene–Quaternary sandstone)	40.47707	93.13603	This paper*
Construction State	Oaidam Basin					- F - F -
Data Barting Description Data Barting Description MT226D2060 90 Plicoene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D2040 86 Plicoene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) MT226D2040 93 Plicoene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) MT27024060 93 Plicoene-Quatemary lacustrine 38.3 93.416667 Pullen et al. (2011) 4-18-09-1 86 Top of yardang 38.2428 92.4412 This paper (see also Rohrmann et al., 2013) 4-17-09-1 90 Top of yardang 38.3582 92.5104 This paper (see also Rohrmann et al., 2013) 4-17-09-1 161 Top of yardang 39.40816 106.7366 This paper (see also Rohrmann et al., 2013) 13YELLOW01 367 River sediment 36.139483 103.609 Stevens et al. (2015) YR-1 121 River sediment 36.139483 103.60963 Nie et al. (2015) YR-2 108 River sediment 35.		88	Quaternary alluvium	38.3	93 416667	Pullen et al. (2011)
M122002000 030 Pilocene-Quatemary lacustime 030	MT226D76000	90	Pliocene_Quaternany lacustrine	38.3	93.416667	Pullen et al. (2011)
M122022-000 B2 Pilocene-Quatemary lacustime B3-3 S3-10007 Pullen et al. (2011) MT226D2004 86 Pilocene-Quatemary lacustime 38.3 93.41667 Pullen et al. (2011) MT297D24060 93 Pilocene-Quatemary lacustime 38.3 93.41667 Pullen et al. (2011) 47.97D24061 93 Pilocene-Quatemary lacustime 38.3 93.41667 Pullen et al. (2011) 4-17-09-1 90 Top of yardang 37.9667 92.7961 This paper (see also Rohrmann et al., 2013) 4-27-09-1 161 Top of yardang 38.34582 92.5104 This paper (see also Rohrmann et al., 2013) Northeast Tibet, Yellow River	MT226DZ0090	90	Pliocene Quaternary lacustrine	20.3	93.410007	Pullon ot al. (2011)
MT297D2060 93 Pliocene-Quaternary lacustrine 36.3 93.416667 Pulien et al. (2011) MT_97D2040 93 Pliocene-Quaternary lacustrine 38.3 93.416667 Pulien et al. (2011) 4-18-09-1 86 Top of yardang 38.242 92.4412 This paper (see also Rohrmann et al., 2013) 4-17-09-1 90 Top of yardang 38.3582 92.5104 This paper (see also Rohrmann et al., 2013) Northeast Tibet, Yellow River 13YELLOW01 367 River sediment 36.1388 103.609 Stevens et al. (2013) VR-1 121 River sediment 36.139483 103.6090 Nie et al. (2015) VR-1 121 River sediment 37.52587 103.66667 Nie et al. (2015) VR-1 121 River sediment 35.725883 109.06631 Pulien et al. (2015) VR-9C 108 River sediment 35.725883 109.06631 Pulien et al. (2011) H1 84 Loess, Heimugou section 35.725883 109.06631 Pulien et al. (2011) H1 84 Loess, Kieng section 35.725883 109.06631 Pulien et al. (2011)	MT226DZ4000	92	Pliocene Quaternary lacustrine	30.3	93.410007	Pullon ot al. (2011)
M1_97D2000 33 Pilocone-Quaternary lacustime 36.3 93.416667 Pullen et al. (2011) 4-17-09-1 80 Top of yardang 37.966 92.7461 This paper (see also Rohrmann et al., 2013) 4-17-09-1 90 Top of yardang 38.3582 92.5104 This paper (see also Rohrmann et al., 2013) 4-27-09-1 161 Top of yardang 38.3582 92.5104 This paper (see also Rohrmann et al., 2013) Northeast Tibet, Yellow River 134 River sediment 39.40816 106.7366 This paper (see also Rohrmann et al., 2013) Northeast Tibet, Yellow River 121 River sediment 36.1388 103.6098 Nie et al. (2015) YR-1 121 River sediment 36.1388 103.6098 Nie et al. (2015) CH11YR03-04 321 River sediment 36.081139 103.86439 Nie et al. (2015) CH1YR03-04 321 River sediment 36.081139 103.86439 Nie et al. (2015) Less depositsChinese Loess Plateau HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 39 Loess, Heimugou section	MT 97D74060	00	Pliocene_Quaternary lacustrine	38.3	93.416667	Pullen et al. (2011)
A12-09-1 86 Top of yardang 38.2428 92.4412 This paper (see also Rohrmann et al., 2013) 4-17-09-1 90 Top of yardang 38.352 92.7961 This paper (see also Rohrmann et al., 2013) A-27-09-1 161 Top of yardang 38.352 92.7961 This paper (see also Rohrmann et al., 2013) Northeast Tibet, Yellow River 39.40816 106.7366 This paper (see also Rohrmann et al., 2013) 13YELLOW01 367 River sediment 36.1384 103.609 Stevens et al. (2015) CH12-21 118 River sediment 36.1384 103.6093 Nie et al. (2015) CH11YR03-04 321 River sediment 37.521867 105.66667 Nie et al. (2015) CH11YR03-04 321 River sediment 37.521867 105.66667 Nie et al. (2015) Loess deposits—Chinese Loess Plateau HL 41 44 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2012) HL1 84 Loess, Kifeng section 35.725883 109.06631	MT_97D24000	93	Pliocene_Quaternary lacustrine	38.3	93.416667	Pullen et al. (2011)
17-10-1 90 Top of yardang 37.9667 92.7961 This paper (see also Rohmann et al., 2013) Northeast Tibet, Yellow River 38.3582 92.5104 This paper (see also Rohmann et al., 2013) Northeast Tibet, Yellow River 367 River sediment 39.40816 106.7366 This paper (see also Rohmann et al., 2013) YR-1 121 River sediment 39.40816 106.7366 This paper (see also Rohmann et al., 2013) YR-1 121 River sediment 36.1388 103.6090 Stevens et al. (2013) YR-1 121 River sediment 36.139483 Nie et al. (2015) YR-1 YR-20 108 River sediment 36.081139 103.86439 Nie et al. (2015) Loess deposits—Chinese Loess Plateau HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 165 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 165 Loess, Weina section 35.725883 109.06631 Pullen et al. (2011) HL3 165 Loess, Kieng section 35.725883 109.06631 Pullen et al	1.18_00_1	86	Top of vardang	38 2/28	93.410007	This paper (see also Bohrmann et al. 2013)
1 100	4_17_09_1	90	Top of yardang	37 9667	92 7961	This paper (see also Rohrmann et al. 2013)
Northeast Tibet, Yellow River 139 130 13	4-27-09-1	161	Top of vardang	38.3582	92.5104	This paper (see also Rohrmann et al., 2013)
Numerical nucl, relation nucl 13YELLOW1 367 River sediment 39.40816 106.7366 This paper YR-1 121 River sediment 36.1388 103.609 Stevens et al. (2013) CH12-21 118 River sediment 35.879167 102.22583 Nie et al. (2015) CH11YR03-04 321 River sediment 37.521967 105.66667 Nie et al. (2015) CH11YR03-04 321 River sediment 37.521967 105.66667 Nie et al. (2015) Chess deposits—Chinese Leess Plateau 103.86439 Nie et al. (2011) HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 165 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 39 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) KF_11 90 Loess, Kifeng section 36.883 107.966 Xiao et al. (2012) Igg 131 Loess, Kifeng section <td< td=""><td>Northeast Tibet</td><td>ellow River</td><td></td><td></td><td></td><td>····· p-p-· (</td></td<>	Northeast Tibet	ellow River				····· p-p-· (
131 ELECWO1 307 Filter sediment 36.400 (0.000		267	Pivor sodimont	20 40916	106 7266	This paper
CH12-21 118 River sediment 35.7305 103.0305 Siver set (2015) YR-1 121 River sediment 36.139483 103.60908 Nie et al. (2015) CH11YR03-04 321 River sediment 36.139483 103.60908 Nie et al. (2015) Loess deposits—Chinese Loess Plateau 35.725883 109.06631 Pullen et al. (2011) L15 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL5 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL5 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Kieng section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Weinan section 35.78583 109.05631 Pullen et al. (2012) 10YG-1 96 Loess, Wienan section 35.78 107.78 Che and Li (2013) LGM Loess 84 Loess, Huanxian section 36.6224 107.786 Xiao et al. (2012) 10YG-2 88 Paleosol, Xing section 36.4	VR-1	101	River sediment	36 1388	103.600	Stevens et al. (2013)
CH12-21 110 Filver sediment 35.579107 102.22003 Nile et al. (2015) CH11YR03-04 321 River sediment 37.521967 105.66667 Nie et al. (2015) Loess All River sediment 36.081139 103.60930 Nie et al. (2015) Loess Generation 35.725883 109.06631 Pullen et al. (2011) HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL5 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 39 Loess, Kifeng section 35.725883 109.06631 Pullen et al. (2011) XF-L1 90 Loess, Kifeng section 35.78583 107.966 Xiao et al. (2012) 10YG-1 96 Loess, Kieng section 35.78 107.78 Che and Li (2013) L6M Loess 84 Loess, Huanxian section 35.883 107.966 Xiao et al. (2010) Paleosols—Chinese Loess Plateau XF-S1 68 Paleosol, Xifeng section 35.883 107.966 Xiao et al. (2012) 109/G-2 88 Pal	CH12 21	110	Piver sediment	25 970167	103.003	Nie of al. (2015)
111 11 11/14 301.03403 100.005403 100.005405 100.005405 VR-9C 108 River sediment 36.081139 103.86439 Nie et al. (2015) Loess deposits—Chinese Loess Plateau HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL5 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Keimugou section 35.725883 109.06631 Pullen et al. (2011) YF-L1 90 Loess, Xifeng section 35.7883 107.966 Xiao et al. (2012) Igg 131 Loess, Xifeng section 36.6224 107.2867 Stevens et al. (2012) IgG 131 Loess, Kifeng section 36.883 107.966 Xiao et al. (2012) IgG 131 Loess, Huanxian section 36.8224 107.2867 Stevens et al. (2012) IgG 131 Loess, Vifeng section 35.883 107.966 Xiao et al. (2012) IgG 131 Loess, Vifeng section 35.883 107.966 Xiao et al. (2012) TJZ-1	VR-1	121	River sediment	36 130/83	102.22505	Nie et al. (2015)
Offminds Open File Thick Solution Open File Open File Loess deposits Chinese Loess Plateau 36.081139 103.86439 Nie et al. (2015) Loess deposits Chinese Loess Plateau 35.725883 109.06631 Pullen et al. (2011) HL9 165 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Kieng section 35.725883 109.06631 Pullen et al. (2011) YF-L1 90 Loess, Xifeng section 35.725883 109.06631 Pullen et al. (2012) 10YG-1 96 Loess, Xifeng section 35.78 107.78 Che and Li (2013) LGM Loess 84 Loess, Huanxian section 36.6224 107.2867 Stevens et al. (2012) Paleosols Chinese Loess Plateau XF-51 68 Paleosol, Xifeng section 36.425 101.783 Xiao et al. (2012) 10YG-2 88 Paleosol, Xing section 35.78	CH11VB03_04	321	River sediment	37 521967	105.66667	Nie et al. (2015)
Loess Plateau Filter Status Loess deposits—Chinese Loess Plateau 35.725883 109.06631 Pullen et al. (2011) HL1 84 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL3 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Xifeng section 35.725883 109.06631 Pullen et al. (2011) XF-L1 90 Loess, Xifeng section 35.7883 107.966 Xiao et al. (2012) 10YG-1 96 Loess, Kifeng section 35.78 107.78 Che and Li (2013) LGM Loess 84 Loess, Huanxian section 36.6224 107.2867 Stevens et al. (2012) Paleosols—Chinese Loess Plateau XF-S1 68 Paleosol, Xifeng section 36.45 101.783 Xiao et al. (2012) TJZ-1 81 Paleosol, Xifeng section 35.725883 109.06631 This paper S-0 94 Paleosol, Kifeng section 35.725883 109.06631 This paper S-1 <td>YB-9C</td> <td>108</td> <td>River sediment</td> <td>36 081139</td> <td>103 86439</td> <td>Nie et al. (2015)</td>	YB-9C	108	River sediment	36 081139	103 86439	Nie et al. (2015)
Litese Upersitis Contractse Upersitie Contractse Upersitie <thcontractse th="" upersitie<=""> Contractse Upe</thcontractse>	Looss doposits	Chinoso Looss E		00.001100	100100100	
HL1 0.1 Lobsol, Haintigou Socion 35.725883 109.06631 Pullen et al. (2011) HL15 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Kieng section 35.725883 109.06631 Pullen et al. (2011) XF-L1 90 Loess, Weinan section 35.883 107.966 Xiao et al. (2012) lig 131 Loess, Xifeng section 35.78 107.78 Che and Li (2013) LGM Loess 84 Loess, Huanxian section 36.6224 107.2867 Stevens et al. (2010) Paleosols—Chinese Loess Plateau XF-S1 68 Paleosol, Xifeng section 35.78 107.76 Xiao et al. (2012) 10YG-2 88 Paleosol, Xifeng section 34.35 109.516 Xiao et al. (2012) 10YG-2 88 Paleosol, Xifeng section 35.78 107.78 Che and Li (2013) 10YG-2 88 Paleosol, Xifeng section 35.78 107.78 Che and Li (2012) 10YG-2 81 Paleosol, Xifeng section 35.725883 109.06631 This paper S-0 <t< td=""><td>HI 1</td><td>84</td><td>Loess Heimugou section</td><td>35 725883</td><td>109 06631</td><td>Pullen et al. (2011)</td></t<>	HI 1	84	Loess Heimugou section	35 725883	109 06631	Pullen et al. (2011)
HL15 239 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) HL33 39 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) XF-L1 90 Loess, Xifeng section 35.883 107.966 Xiao et al. (2012) 10YG-1 96 Loess, Weinan section 34.35 109.516 Xiao et al. (2012) Igig 131 Loess, Xifeng section 35.78 107.78 Che and Li (2013) LGM Loess 84 Loess, Huimugou section 36.6224 107.2867 Stevens et al. (2010) Paleosols—Chinese Loess Plateau XF-S1 68 Paleosol, Xifeng section 35.78 107.966 Xiao et al. (2012) 10YG-2 88 Paleosol, Xifeng section 36.425 109.516 Xiao et al. (2012) 10YG-2 88 Paleosol, Xining section 36.45 101.783 Xiao et al. (2012) 10YG-2 88 Paleosol, Xining section 35.78 107.78 Che and Li (2012) 10J2 261 Paleosol, Xining section 35.78 107.78 Che and Li (2013) S-0	HIG	165	Loess Heimugou section	35 725883	109.00001	Pullen et al. (2011)
H133 39 Loess, Heimugou section 35.725883 109.06631 Pullen et al. (2011) XF-L1 90 Loess, Xifeng section 35.883 107.966 Xiao et al. (2012) 10YG-1 96 Loess, Xifeng section 35.78 107.78 Che and Li (2013) LGM Loess 84 Loess, Huanxian section 36.6224 107.2867 Stevens et al. (2010) Paleosols—Chinese Loess Plateau XF-S1 68 Paleosol, Xifeng section 35.883 107.966 Xiao et al. (2012) 10YG-2 88 Paleosol, Xifeng section 36.6224 107.2867 Stevens et al. (2012) 10YG-2 88 Paleosol, Xiing section 36.425 109.516 Xiao et al. (2012) 10YG-2 88 Paleosol, Xiing section 36.45 101.783 Xiao et al. (2012) slgj 261 Paleosol, Xifeng section 35.725883 109.06631 This paper S-0 94 Paleosol, Heimugou section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 <td< td=""><td>HI 15</td><td>239</td><td>Loess Heimugou section</td><td>35 725883</td><td>109.06631</td><td>Pullen et al. (2011)</td></td<>	HI 15	239	Loess Heimugou section	35 725883	109.06631	Pullen et al. (2011)
XF-L1 90 Loess, Xifeng section 35.883 107.966 Xiao et al. (2012) 10YG-1 96 Loess, Xifeng section 35.883 107.966 Xiao et al. (2012) lig 131 Loess, Xifeng section 35.78 107.966 Xiao et al. (2013) LGM Loess 84 Loess, Huanxian section 36.6224 107.2867 Stevens et al. (2010) Paleosols—Chinese Loess Plateau XF-S1 68 Paleosol, Xifeng section 35.883 107.966 Xiao et al. (2012) 10YG-2 88 Paleosol, Xifeng section 36.425 101.783 Xiao et al. (2012) sigi 261 Paleosol, Xifeng section 36.455 101.783 Xiao et al. (2012) sigi 261 Paleosol, Xifeng section 35.78 107.78 Che and Li (2013) S-0 94 Paleosol, Kifeng section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105	HI33	30	Loess Heimugou section	35 725883	109.06631	Pullen et al. (2011)
NumberDescriptionStateDescription10YG-196Loess, Weinan section34.35109.516Xiao et al. (2012)lig131Loess, Xifeng section35.78107.78Che and Li (2013)LGM Loess84Loess, Huanxian section36.6224107.2867Stevens et al. (2010)Paleosols—Chinese Loess PlateauXF-S168Paleosol, Xifeng section35.883107.966Xiao et al. (2012)10YG-288Paleosol, Weinan section34.35109.516Xiao et al. (2012)10YG-288Paleosol, Xifeng section36.45101.783Xiao et al. (2012)TJZ-181Paleosol, Xifeng section35.78107.78Che and Li (2012)Slgj261Paleosol, Kifeng section35.725883109.06631This paperS-1108Paleosol, Heimugou section35.725883109.06631This paperS-9103Paleosol, Heimugou section35.725883109.06631This paperS-15105Paleosol, Heimugou section35.725883109.06631This paper	XF-I 1	90	Loess Xifena section	35 883	107 966	Xiao et al. (2012)
InstructionInstructionInstructionIg131Loess, Xifeng section35.78107.78Che and Li (2013)LGM Loess84Loess, Huanxian section36.6224107.2867Stevens et al. (2010)Paleosols—Chinese Loess PlateauXF-S168Paleosol, Xifeng section35.883107.966Xiao et al. (2012)10YG-288Paleosol, Xifeng section34.35109.516Xiao et al. (2012)TJZ-181Paleosol, Xifeng section36.45101.783Xiao et al. (2012)slgj261Paleosol, Xifeng section35.78107.78Che and Li (2013)S-094Paleosol, Heimugou section35.725883109.06631This paperS-1108Paleosol, Heimugou section35.725883109.06631This paperS-9103Paleosol, Heimugou section35.725883109.06631This paperS-15105Paleosol, Heimugou section35.725883109.06631This paperS-2295Paleosol, Heimugou section35.725883109.06631This paper	10YG-1	96	Loess Weinan section	34 35	109.516	Xiao et al. (2012)
Jack LoessLoess, Huanxian section36.6224107.2867Stevens et al. (2010)Paleosols—Chinese Loess PlateauXF-S168Paleosol, Xifeng section35.883107.966Xiao et al. (2012)10YG-288Paleosol, Weinan section34.35109.516Xiao et al. (2012)1UYG-288Paleosol, Xifeng section36.624107.2867Xiao et al. (2012)1UYG-281Paleosol, Xining section36.645101.783Xiao et al. (2012)1UZ-181Paleosol, Xining section35.78107.78Che and Li (2013)S-094Paleosol, Heimugou section35.725883109.06631This paperS-1108Paleosol, Heimugou section35.725883109.06631This paperS-9103Paleosol, Heimugou section35.725883109.06631This paperS-15105Paleosol, Heimugou section35.725883109.06631This paperS-2295Paleosol, Heimugou section35.725883109.06631This paper	lia	131	Loess Xifeng section	35.78	107 78	Che and Li (2013)
Paleosols—Chinese Loess PlateauXF-S168Paleosol, Xifeng section35.883107.966Xiao et al. (2012)10YG-288Paleosol, Weinan section34.35109.516Xiao et al. (2012)TJZ-181Paleosol, Xining section36.45101.783Xiao et al. (2012)slgj261Paleosol, Xifeng section35.78107.78Che and Li (2013)S-094Paleosol, Heimugou section35.725883109.06631This paperS-1108Paleosol, Heimugou section35.725883109.06631This paperS-9103Paleosol, Heimugou section35.725883109.06631This paperS-15105Paleosol, Heimugou section35.725883109.06631This paperS-2295Paleosol, Heimugou section35.725883109.06631This paper	LGM Loess	84	Loess, Huanxian section	36.6224	107.2867	Stevens et al. (2010)
XF-S1 68 Paleosol, Xifeng section 35.883 107.966 Xiao et al. (2012) 10YG-2 88 Paleosol, Weinan section 34.35 109.516 Xiao et al. (2012) TJZ-1 81 Paleosol, Xiing section 36.45 101.783 Xiao et al. (2012) slgj 261 Paleosol, Kifeng section 35.78 107.78 Che and Li (2013) S-0 94 Paleosol, Heimugou section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	Paleosols-Chine	ese Loess Platea				
10YG-2 88 Paleosol, Weing section 34.35 109.516 Xiao et al. (2012) TJZ-1 81 Paleosol, Xiing section 36.45 101.783 Xiao et al. (2012) slgj 261 Paleosol, Xifeng section 35.78 107.78 Che and Li (2013) S-0 94 Paleosol, Heimugou section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	XF-S1	68	Paleosol Xifeng section	35 883	107 966	Xiao et al. (2012)
TJZ-1 81 Paleosol, Xining section 36.45 101.783 Xiao et al. (2012) slgj 261 Paleosol, Xifeng section 35.78 107.78 Che and Li (2013) S-0 94 Paleosol, Heimugou section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	10YG-2	88	Paleosol, Weinan section	34 35	109 516	Xiao et al. (2012)
Selig 261 Paleosol, Xing Social 35.78 101.768 Che and Li (2013) S-0 94 Paleosol, Heimugou section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-12 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	T.IZ-1	R1	Paleosol Xining section	36.45	101 783	Xiao et al. (2012)
S-0 94 Paleosol, Heimugou section 35.725883 109.06631 This paper S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	slai	261	Paleosol, Xifeng section	35 78	107 78	Che and Li (2013)
S-1 108 Paleosol, Heimugou section 35.725883 109.06631 This paper S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	S-0	Q/	Paleosol, Heimugou section	35 725882	109 06631	This paper
S-9 103 Paleosol, Heimugou section 35.725883 109.06631 This paper S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	S-1	108	Paleosol, Heimugou section	35 725882	109 06631	This paper
S-15 105 Paleosol, Heimugou section 35.725883 109.06631 This paper S-22 95 Paleosol, Heimugou section 35.725883 109.06631 This paper	S-9	103	Paleosol, Heimugou section	35 725882	109 06631	This paper
S-22 95 Paleosol. Heimugou section 35.725883 109.06631 This paper	S-15	105	Paleosol, Heimugou section	35.725883	109.06631	This paper
	S-22	95	Paleosol. Heimugou section	35.725883	109.06631	This paper

Note: Global positioning system coordinates for samples from other studies, when not specified in their original publication, were estimated from published maps. *Samples have not been included in the regional clusters because either their location is at the interface between two clusters (sample 13DUNE02), or because they are located too far from the major dust-storm tracks supplying the Chinese Loess Plateau (see Figs. 1 and 2).

Figure 3. Kernel density estimators (KDE) and histograms (20 Ma bins) for the loess layers of the Chinese Loess Plateau (CLP; n = 928; see Results section) and five random subsamples (n = 100), shown for the interval 0-1500 Ma. The KDE and histograms for the Qaidam Basin (n = 879)are shown for comparison. The kernel density bandwidth of each plot was determined with plug-in bandwidth selection method of Botev et al. (2010). Whereas the 380-500 Ma age peak is clearly distinct and slightly higher than the 225-330 Ma age peak in Chinese Loess Plateau total age distribution, this pattern can be lost in smaller subsamples (peaks of similar size in subsample b; peaks nonexistent in subsamples

c and d) or significantly increased (380–500 Ma age peak prominent in subsample e, as seen in Qaidam Basin age distribution). This illustrates the uncertainty introduced by small-*n* samples in interpreting relative age peak magnitudes.

extending from the Qilian Mountains in the south to the Altai Mountains in the north;

(3) the Qaidam Basin, located to the west of the Chinese Loess Plateau and bounded by the Nan-Qilian, Altyn, and Kunlun mountains to the northeast, northwest, and south, respectively; and

(4) the Upper Yellow River drainage system in northeast Tibet, which transports sediment to the north of the Chinese Loess Plateau that can be reworked by wind (Stevens et al., 2013; Nie et al., 2015).

These four provinces are considered to be the only direct providers of coarse-grained dust. A contribution from the Taklimakan and Gobi Deserts, located further west and north, has also been proposed (Che and Li, 2013; Nie et al., 2014; Yan et al., 2014). However, we argue that any coarse (>12 μ m) eolian zircon supply from these regions would have to transit via saltation across the Mu Us, central sand deserts, and/or the Qaidam Basin and that its signature should be represented in the zircons of these three regions (Amit et al., 2014).

For the four selected source province regions, we compiled previously published and our new U-Pb zircon ages from eolian, fluvial, and lacustrine deposits, as well as from wind-eroded strata (see Table 1 for data compilation). All the selected U-Pb ages come either from Pliocene–Quaternary deposits, or from older strata (Miocene to Cretaceous) that exhibit evidence of having been wind eroded.

Note that five new samples were not incorporated in these four regional clusters (Table 1), because they are located either too far from the Chinese Loess Plateau, in areas characterized by easterly surface winds blowing into the Taklimakan (samples 13DUNE07, 13DUNE09, 13COSMO07, and 13COSMO09), or at the geographical boundary between two provenance provinces (sample 13DUNE02).

We divided the dust deposits of the Chinese Loess Plateau into two main groups:

(1) the Quaternary loess sequences, commonly numbered from L1 to L33 (younger to older), which were deposited during glacial periods (An et al., 1990); and

(2) the paleosol layers, numbered from S0 to S32, which experienced pedogenesis during interglacial periods (An et al., 1990; Porter and An, 1995).

For these two groups, we compiled new and existing U-Pb ages from samples located on the south and eastern parts of the Chinese Loess Plateau, excluding localities that are proximal to the potential provenance provinces, in order to avoid local bias in supply (i.e., Che and Li, 2013; Xiao et al., 2012).

Figure 4. Multidimensional scaling (MDS) map for the loess layers of the Chinese Loess Plateau (CLP total), the five random subsamples of Figure 2, and Qaidam Basin. Axes are in dimensionless "KeS units" (0 < Kolmogorov-Smirnov [KS] < 1) of dissimilarity between samples (Vermeesch, 2013). Solid lines and dashed lines connect samples with their "closest" and second-closest neighbors, respectively. Final "stress" value is 0.098, indicating a fit between "fair" and "good" (Vermeesch, 2013). Note that subsamples are randomly scattered around CLP total, with distances similar to the one separating Qaidam Basin and Chinese Loess Plateau age distributions. The uncertainty introduced here by subsampling does not allow these two areas to be distinguished.

Geological Society of America Bulletin, v. 128, no. 5/6

Figure 5. Kernel density plots of the 23 samples presented in this study. The kernel density bandwidth of each plot was determined with plug-in bandwidth selection method of Botev et al. (2010). Same legend as Figure 2.

Statistical Analysis

The second step of our approach was to focus on the age distributions of the six geographical regions (the four provenance provinces and the two dust groups). The amplitudes of the age peak contributions are meaningful here given the large number of zircon ages (n > 800) determined for each region. The age distributions can be visually compared using histogram diagrams, probability density plots (PDPs), and kernel density estimators (KDEs; Vermeesch, 2012). PDPs are omitted from the figures in this paper because KDE and PDP converge toward a single representation of the distribution of ages for large-n data sets (Pullen et al., 2014). In an attempt to quantify sample age components and their contribution, we used the freeware Bayes-Mix (Compston and Gallagher, 2012), which statistically determines the number, age, width, and contribution of individual components in age distributions. BayesMix uses a reversible jump Markov chain Monte-Carlo (RJ-MCMC) approach, which is an iterative, Bayesian sampling strategy that allows the number of individual components to change, as well as their age, width, and contribution, in order to best fit a given age distribution (Jasra et al., 2006; Gallagher et al., 2009). For each age data set used in the paper, BayesMix was run for 15,000 iterations (details in Table DR2 [see footnote 1]), assuming heavy skew-*t* distributions with equal weighting on skewness.

One of the most promising attempts to quantitatively determine the contribution of different sources with complex age distributions in samples of unknown sourcing was provided by the iterative mixture modeling strategy of Amidon et al. (2005), and which was subsequently used on Tibetan samples (Lease et al., 2007, 2012). The iterative approach for mixture modeling of Amidon et al. (2005) consists of modeling synthetic age distributions by proportionally combining the probability density functions (PDFs) of the potential sources for the whole range of possible source combinations. Then, the best mixture is found by minimizing the dissimilarity between the synthetic PDFs and the PDF of the sample (or sets of samples in this case) of unknown sourcing, using the KS statistic or the areal percent mismatch as dissimilarity measures. This approach implies that the PDFs of each potential source region perfectly reflect the whole range of ages that contributes to the mixture. Erosion and sediment transport are nonstationary processes, however, and only

a small, random subsample of zircons from each source reaches the point of deposition. To take into account this potential variability in the zircon supply and the potential uncertainty introduced by random subsampling during erosion and transport, we developed a modified version of the strategy used by Amidon et al. (2005).

For each possible combination of the four identified source regions (for instance, Mu Us Desert: 20%, central sand deserts: 30%, Qaidam Basin: 12%, and northeast Tibet: 38%), we modeled N synthetic age distributions of 800 ages by randomly picking the necessary amount of ages in each source data set. N was chosen to be large enough to reproduce the potential variability in zircon subsampling. We then calculated the dissimilarity between each of these N synthetic age distributions and the loess (or paleosol) age distribution. There are different ways to determine the combinations that best fit the loess (or paleosol). A first approach is to determine the minimum dissimilarity value δ_{min} among the N synthetic age distributions and for the whole array of potential source combinations. The combinations that best fit the loess (or paleosol) are those for which this minimum δ_{min} value is reached for at least one of their N synthetic distributions. A second approach

is to consider the average dissimilarity value among the N synthetic age distributions per potential source combination. The combinations that best fit the loess (or paleosol) are those for which this average dissimilarity value is the lowest (named here Δ_{\min}). This way of determining the best fit takes into account the reproducibility of the dissimilarity values per source combination but minimizes the potential effect of subsampling in the contribution of the source provinces. A final approach is to consider the range of source combinations for which more than half (or two thirds, depending on the required precision) of the N synthetic distributions are "statistically similar" to the loess (or paleosol) age distribution. The notion of "statistical similarity" depends on the chosen dissimilarity measure.

We used the KS statistic as the dissimilarity measure, which has been shown to be an effective dissimilarity indicator (Vermeesch, 2013). We also tried another dissimilarity measure, the Anderson-Darling statistic, and it yielded no significant impact on the results (not shown). N = 200 was recognized to be sufficient to stabilize the average dissimilarity values and their standard deviation. Two age distributions are considered statistically identical when the two-sample KS statistic does not reject the null hypothesis at the 95% confidence level.

RESULTS AND INTERPRETATION

U-Pb Age Distributions

Probability density plots, age histograms, and main age components for the maximum posterior models determined by the RJ-MCMC approach for the six geographic provinces are displayed in Figure 6. Mean, mode, standard deviation, and skew parameters for all components are given in Table DR2 (see footnote 1). Note that age components in the maximum posterior models are overall Gaussian, and that only the old (older than 1500 Ma) components display skewed distributions. Cumulative probability plots are shown in Figure 7.

The age distributions of the four potential provenance regions and loess and paleosol layers share several similar features. Grains younger than 700 Ma contribute from 40% (in the Mu Us Desert) to 60% (Qaidam Basin, northeast Tibet), and up to 70% (in the central sand deserts) of the total populations (Fig. 7). These young grains are divided into two major populations, centered at 240–270 Ma and 440–480 Ma, with relatively narrow distributions (1 σ < 20 Ma). Older grains are grouped into three main populations with wider distributions (1 σ commonly > 50 Ma), centered at 750–1130 Ma,

at 1645–1980 Ma, and 2430–2640 Ma, contributions of which vary from 2% to 25% of the total distributions.

Several distinctions can be made between the northern (Mu Us and central sand deserts) and southwestern provinces (Qaidam Basin and Upper Yellow River drainage system), as well as among individual regions:

(1) In the two northern provinces, the 240–270 Ma age peak is prominent (28%–48% of the total grains) and contributes twice as much as the 440–480 Ma age peak to the total age population. In contrast, the 440–480 Ma age peak is prominent in the southwestern provinces (30%–46% of the total grains). The 440–480 Ma age peak contributes ~25% more than the 240–270 Ma age peak to the total age population in Upper Yellow River sediment, and almost three times more in the Qaidam Basin.

(2) The zircon population centered at 750– 1130 Ma is particularly important in the Qaidam Basin (~20%) and in Upper Yellow River sediment (~16%), and almost nonexistent in the northern provinces (2%-5%).

(3) The Mu Us Desert is distinguishable in having a large contribution ($\sim 60\%$) of grains older than 1500 Ma, whereas this contribution is less in other regions ($\sim 30\%$).

The age distributions of Yellow River, loess, and paleosol layers do not show any significant difference, and the contributions of major age peaks vary by only 2%-5% between the three distributions. The two-sample KS test between loess and paleosol layers yields a high P value (P = 0.86), indicating that both distributions are statistically indistinguishable; this P-value is lower between Yellow River and loess (P =0.18) and between Yellow River and paleosol layers (P = 0.65), though still indicating statistical similarity between age distributions. Grains younger than 700 Ma contribute ~50% of the total population; the 440-480 Ma age peak contributes 17%-32% more than the 240-270 Ma age peak to the total age population. The zircon population centered at 750-1130 Ma is important and contributes between 11% and 16%. Zircons older than 1500 Ma constitute the remaining 30% of the total age population. Note that Yellow River, loess, and paleosol layers yield a minor (1%-4%) population of very young grains (younger than 65 Ma), already noted by Pullen et al. (2011), that is absent in the three other potential provenance regions.

Qualitative Assessment of Eolian Dust Provenance

The prominence of the 440–480 Ma age population in eolian dust samples compared to the 240–270 Ma age population (17%–32% higher) is consistent with Upper Yellow River and/or Qaidam Basin being dominant sources. Statistical and visual similarity between loess or paleosol layers and Yellow River sediment indicates that the latter is likely the prominent source. However, minor contributions of coarse-grain zircon crystals from other provinces cannot be rejected if they are combined. Contributions of Upper Yellow River main age peaks appear to be intermediate between those of the Qaidam Basin and those of the two northern provinces. A combined contribution of both these regions could potentially result in a mixed age distribution that is similar to those of Yellow River sediment. We conclude that the eolian dust age distributions reflect a prominent contribution from the Yellow River, with a potential, minor additional supply from the three other provinces that is challenging to assess visually.

Quantitative Assessment of Eolian Dust Provenance

We used the mixture modeling strategy introduced in Methods section to determine the combination of the four potential source regions that best fits the age distributions of loess and paleosol layers. The average dissimilarity to the loess and paleosol layers is displayed in ternary diagrams spanning the whole possible array of source combinations (Figs. 8 and 9). Combinations yielding the minimum dissimilarity value δ_{min} and lowest average dissimilarity value Δ_{min} are given in Table 2.

For loess layers, lowest average dissimilarity values (0.04-0.06) were obtained for a contribution of Qaidam Basin between 0% and 30%, contribution of the two northern provinces between 0% and 20% each, and a contribution of Yellow River sediment between 40% and 100% (Fig. 8). The range of combinations for which more than two thirds of the N random synthetic distributions are statistically similar to the loess is broader, with a Yellow River contribution that can decrease to 10%, mainly counterbalanced by an increasing contribution from Qaidam Basin. The minimum dissimilarity value δ_{min} and the lowest average dissimilarity $\Delta_{\!_{min}}$ are relatively similar and indicate a best fit for a common contribution from the Yellow River of 58%-68%, a contribution from the Qaidam Basin between 14% and 20%, and the two northern provinces contributing the remainder. P values of the KS statistic for these combinations are >0.8, indicating a very good fit. These P values are higher than those for the KS test between Yellow River and loess age distributions.

The combinations that best fit the age distribution of paleosol layers are similar to those for

Figure 6. Normalized kernel density plots, histograms (40 Ma bins), and main components for the four potential source provinces (Mu Us Desert, central sand deserts, Qaidam Basin, and northeast Tibet), and the loess and paleosols layers of the Chinese Loess Plateau (CLP), shown for the interval 0–3500 Ma. Main components were obtained using the software BayesMix (see Methods section). The height of each vertical line reflects the component contribution (c) to the age population. Mean (μ) and standard deviation (σ) are given for components with contribution >10%. Note the juxtaposition of two components with similar mean age (457–458 Ma) but different standard deviations for the Qaidam Basin. Mean, mode, standard deviation, and skew parameters for all components are given in Table DR2 (see text footnote 1). Old (older than 1500 Ma) age peaks appear to be better resolved when slightly skewed in BayesMix maximum posterior models, explaining the visual offset between age peaks in density plots and components in several samples (peak at 2588 Ma for the Mu Us Desert).

the loess layers (Fig. 9). This is not surprising, considering the visual similarity between paleosol and loess age distributions. The minimum dissimilarity value δ_{min} indicates a best fit for a contribution from the Yellow River of 66%, a

contribution from the Qaidam Basin of 26%, and the two northern provinces contributing the remainder. The lowest average dissimilarity Δ_{min} is slightly different, indicating a best fit for a single provenance from the Yellow River (96%)

of the total supply); however, other low average dissimilarity values (0.04-0.06) occupy a broad range similar to the one for loess layers. *P* values of the KS statistic for these combinations are also >0.8, indicating a very good fit.

Figure 7. Cumulative probability density plots for the four potential source provinces (Mu Us Desert, central sand deserts, Qaidam Basin, and upper Yellow River), and the loess and paleosols layers of the Chinese Loess Plateau (CLP), shown for the interval 0–3500 Ma.

DISCUSSION

Eolian Sedimentary Budget on the Chinese Loess Plateau

Both visual and statistical assessments of eolian dust age distributions suggest that the Yellow River is the dominant source (>50%) for the coarse fraction of the eolian deposits of the Chinese Loess Plateau. Our statistical approach

ter explained with an additional, combined supply from the three other provinces, but not as significant as previously proposed (An et al., 1990; Ding et al., 1999; Pullen et al., 2011; Amit et al., 2014). Our approach included mixing U-Pb data

also shows that dust age distributions are bet-

from various locations on the Chinese Loess Plateau to build large-n eolian dust U-Pb data sets. Thus, our analysis cannot address regional

variability in sediment sourcing on the loess plateau, which would be accomplished through analysis of single sample large-n data. In that sense, our results do not contradict previous U-Pb studies emphasizing the importance of the Mu Us Desert and the Yellow River as a major eolian source in the northern part of the Chinese Loess Plateau (Stevens et al., 2013; Bird et al., 2015; Nie et al., 2015), or northeast Tibet in its westernmost parts (Xiao et al., 2012; Che and Li, 2013; Bird et al., 2015). However, we argue that most of all the interpretations from previous U-Pb studies should be taken with caution because they are based on only 80-200 ages per sample (i.e., Stevens et al., 2010, 2013; Pullen et al., 2011; Xiao et al., 2012; Che and Li, 2013; Nie et al., 2014), and may thus be influenced by age subsampling effects (e.g., Fig. 3). Similarly, grouping U-Pb ages in regional clusters results in a loss of information on variation in the sediment composition in the source regions themselves. For instance, previous studies have emphasized variability of U-Pb age distributions within the Mu Us Desert, with western Mu Us sands showing a significant contribution from eolian recycling from Yellow River sediment (Stevens et al., 2010, 2013). Localized sourcing from more spatially limited areas cannot be

Figure 8. Dissimilarity to the loess layers of the Chinese Loess Plateau for each possible combination of the four potential source regions (A—Mu Us Desert; B—central sand deserts; C—Qaidam Basin; D—upper Yellow River). Each triangle is a ternary diagram of contribution from the provinces A, B, and D for a given contribution of C (contributions of A + B + C + D = 100% for each triangle; see example for C = 20% on the left side of the figure). The color bar indicates the range of values for the dissimilarity measure, here the Kolmogorov-Smirnov (KS) statistic averaged for *N* random synthetic distributions per source combination (*N* = 200). The combinations that best fit the loess age distribution are the ones that give the lowest dissimilarity values. An alternative way to determine the best fit is to look at the range of combinations for which more than two thirds of the *N* random synthetic distributions are statistically similar to the loess (here in the sense of the KS statistic at the 95% confidence level), depicted by red isolines in the figure.

Figure 9. Dissimilarity to the paleosol layers of the Chinese Loess Plateau for each possible combination of the four potential source regions. Same legend as Figure 8 (A—Mu Us Desert; B—central sand deserts; C—Qaidam Basin; D—upper Yellow River).

investigated with our methodology and current data set, but it is likely that the continuously increasing number of U-Pb data from central China will allow it in the near future. In this regard, our study is valuable because it provides an approach about how to assess these increasingly large-*n* data sets. Finally, it is important to remember that we only investigated a fraction of the provenance signal by using U-Pb ages of "coarse" zircons (laser spot diameter of 12 μ m for dust samples; 30 μ m otherwise). Relative contribution estimates may change significantly when smaller grain sizes are considered.

Our eolian budget estimates confirm that Yellow River input buffers the contribution of other sources to the Chinese Loess Plateau for the dust coarse fraction (Stevens et al., 2013; Nie et al., 2015). This prominent contribution is corroborated by heavy mineral counting, framework petrography, and sediment flux estimates (Nie et al., 2015). These results do not completely rule out other modes of transportation for the Tibetan-sourced dust, because they cannot tell the difference between zircons that came from Tibet via the Yellow River and were then reworked by winds further north (Stevens et al., 2013; Nie et al., 2015), and zircons that were blown directly off the Yellow River drainage basin and landed on the Chinese Loess Plateau (Pullen et al., 2011). They do, however, corroborate minor yet significant supply of coarse sediment from the Qaidam Basin (Pullen et al., 2011; Kapp et al., 2011). The range of potential Oaidam Basin contribution that could best explain the dust age distributions is yet relatively broad-and thus uncertain-in our statistical estimates (Figs. 8 and 9). This

is not surprising, because Qaidam Basin and Yellow River age distributions are relatively similar, in contrast to the age distributions of the two northern provinces. This is partly due to the fact that parts of the Yellow River source tributaries drain northern Tibet and the Kunlun Mountains, areas that also bound and supply the Qaidam Basin (Yin et al., 2008). Given the importance of large *n* to distinguish both provinces, it is likely that their relative contributions to the eolian budget will continue to change as more data are generated. Our results yet corroborate the existence of an alternative dust-storm pathway through the Qaidam Basin, infrequent today but that must have been active in the past (Vandenberghe et al., 2006; Kapp et al., 2011; Pullen et al., 2011; Rohrmann et al., 2013). Eolian erosion in the Qaidam Basin has been interpreted to be most significant during glacial periods (Kapp et al., 2011; Rohrmann et al., 2013). In this regard, a notable finding is the lack of a detectable difference in sourcing between glacial (loess) and interglacial (paleosols) deposits. Constant Yellow River contribution during both periods is not surprising because fluvial reworking should have occurred regardless of most

changes in atmospheric circulation, as Yellow River fluvial sediment surrounds the Chinese Loess Plateau to the west and north (Nie et al., 2015). However, minor Qaidam Basin contribution to the eolian supply during interglacials is counterintuitive, because modern dust-storm outbreaks are very limited there (Sun et al., 2001). An explanation for this minor Qaidam component in paleosol layers is that part of the interglacial dust is also recycled from previous glacial (and interglacial) deposits (Kohfeld and Harrison, 2003; van Loon, 2006; Kapp et al., 2015). Eolian dust recycling in loess accumulations has been shown to be a significant process in other areas (e.g., Mroczek, 2013; Sweeney and Mason, 2013). Extensive sediment reworking by wind would serve to homogenize the composition of glacial-aged loess and dust in interglacial-aged paleosols.

We thus suspect that the relative contribution of the northern and northwestern deserts compared to the Qaidam Basin was more important during interglacials, such as observed today (Wang et al., 2004), but this contribution has been significantly dampened by recycling of older loess. Similarly, the relative contribution from the Qaidam Basin during glacials was

TABLE 2. COMBINATIONS YIELDING MINIMUM DISSIMILARITY VALUE Δ_{MIN} AND LOWEST AVERAGE DISSIMILARITY VALUE δ_{MIN}

	Loess	layers	Paleosol layers					
	Minimum dissimilarity	Average dissimilarity	Minimum dissimilarity	Average dissimilarity				
	value, δ_{min}	value, Δ_{min}	value, δ_{min}	value, Δ_{min}				
	(%)	(%)	(%)	(%)				
Mu Us Desert	8	6	6	0				
Central sand deserts	14	12	2	4				
Qaidam Basin	20	14	26	0				
Northeast Tibet	58	68	66	96				

Licht et al.

likely greater than during interglacials, and this proportion has been reduced by reworking of older deposits.

"Eolian Cannibalism" and the Building of the Chinese Loess Plateau

Our contribution estimates imply that buffering of dust supply by reworking of Yellow River sediment and intense reworking of older loess and paleosol deposits have served to mix eolian dust and homogenize their provenance signatures. This explanation is supported by similar heavy mineral assemblages for both loess and paleosol layers (Nie and Peng, 2014). It is also corroborated by recent geomorphological analyses of wind erosion features in the Mu Us Desert and on the northern part of the Chinese Loess Plateau, suggesting that the central and eastern Loess Plateau previously extended farther to the north and west of its modern windward escarpment, and that this extension has been reworked and redeposited further south during the late Quaternary (Kapp et al., 2015). Considering that eolian dust accumulation rates were commonly 2-20 times larger during glacial periods than during interglacial periods, with a high regional variability (Kohfeld and Harrison, 2003; Sun et al., 2008), it is not surprising that recycling on the Chinese Loess Plateau homogenized eolian zircon populations toward glacial conditions, with a significant Qaidam Basin (~20%) contribution.

These findings corroborate the idea that the Chinese Loess Plateau is a dynamic landform where deflation, lateral transport by winds and rivers, and aggradation are equally important (Nie et al., 2015; Kapp et al., 2015). Evidence of extensive reworking of fluvial and eolian sediment suggests that the extensive Quaternary loess sequences are just the tip of the iceberg of a much longer accumulation history. Older, pre-Quaternary loess deposits at the margin of the Chinese Loess Plateau are likely to have been cannibalized by winds, such as seen in the Mu Us Desert (Kapp et al., 2015), or reworked by fluvial processes and redeposited, leaving a few isolated remnant deposits (An et al., 2001; Guo et al., 2002; Alonso-Zarza et al., 2009; Licht et al., 2014).

Evidence of intense recycling and "overrepresentation" of Yellow River sediment and glacially sourced dust raise concerns about the relevance of several paleoclimatic proxies applied to Chinese loess sequences. Petrography, mineralogy, or geochemistry analyses of single-particle or bulk eolian sediment might be significantly either buffered by fluvial provenance and/or biased toward glacial dust, explaining why many studies found changes of sediment properties between loess and paleosol layers to be much weaker compared to the regional variability (e.g., Gylesjö and Arnold, 2006; Jeong et al., 2011; Yan et al., 2014; Nie and Peng, 2014). We suggest that proxies linked to in situ pedogenic development (in contrast with proxies linked to basinwide pedogenic development, as dust fine-fraction clayminerology, likely related to weathering in the sediment source areas) are the only ones lacking bias toward glacial conditions and fluvial sediment reworking because they are independent of sediment sourcing. Notably, iron-oxide mineralogy, as well as magnetic susceptibility and other various magnetic parameters, have been shown to highlight significant differences between loess and paleosol layers (e.g., Maher and Thompson, 1991; Deng et al., 2004; Song et al., 2014). This can be explained by the overall authigenic character of magnetic minerals, which form in situ in paleosol layers rather than being transported by winds (e.g., Maher and Thompson, 1991, and references therein). However, recycling of pedogenic microstructures, including clay aggregates and iron-oxide nodules, has been shown to be significant in other loess accumulations (Mroczek, 2013). In that sense, paleoclimatic proxies linked to in situ pedogenic development might be biased to a small degree by the reworking of older Chinese paleosol layers as well, though this assumption is hard to verify.

Implications for the Genesis of the Chinese Loess Plateau

Our findings emphasize the prominent role of eolian reworking of freshly brought fluvial sediment and older loess deposits in the building of the Chinese Loess Plateau. We thus suspect that two distinct phenomena might have controlled the recent Pliocene–Quaternary increase as well as the long-term Cenozoic increase in eolian accumulation rates (Sun et al., 2008, 2011).

First, increased denudation of northeast Tibet and consecutive fluvial transport further north must have significantly enhanced loess accumulation (Nie et al., 2015). Active deformation and resultant rock uplift have modified the topography and increased denudation of the northeastern margin of Tibet throughout the Cenozoic, with a recent acceleration since the middlelate Miocene (e.g., Métivier et al., 1998; Clark et al., 2010; Duvall et al., 2011; Li et al., 2011; Lease et al., 2012). Increased erosion due to the onset of oscillating glacial conditions (Peizhen et al., 2001) and the setup of the Yellow River in its modern course (Craddock et al., 2010; Nie et al., 2015) must have additionally increased fluvial sedimentary input into the Chinese Loess Plateau and its consecutive reworking by winds.

Moreover, we suspect that increased eolian accumulation rates might reflect enhanced recycling of older loess and fluvial strata as much as increased dust generation. Indeed, the long-term erosion of older eolian and fluvial strata and their recycling in younger eolian dust deposits should reduce the spatial extent and thickness of older loess deposits, whereas younger loess deposits would appear prominent in the fossil record. It is thus very likely that changes in accumulation rates or regional onsets of eolian sedimentation in the fossil record are strongly biased by this recycling effect. Note that we do not question the numerous other paleoclimatic proxy records demonstrating aridification and desert expansion since the late Miocene (e.g., Wang et al., 1999; Wang et al., 2006; Wu et al., 2007; Han et al., 2014). However, we suspect that increasing aridity throughout the Pliocene-Quaternary might have favored the reworking of older deposits on the Chinese Loess Plateau as much as dust generation in distant deserts.

CONCLUSION

Our study highlights how provenance interpretations based on U-Pb ages of detrital zircons can be misleading when based on a small number of zircon ages. As already emphasized previously (Pullen et al., 2014), we argue that interpretations based on age peak heights, as well as mixture modeling of provenance provinces, are only meaningful when the number of ages per region is high enough (here >800) to stabilize the shape of age distributions. We present a new mixture modeling method to quantify the contribution of different sources of known age distribution. Our method takes into account the potential uncertainties introduced by random zircon subsampling during erosion and transport and allows us to statistically estimate the combination of known sources that best fits the age distribution of samples of unknown sourcing.

Our contribution estimates based on available data indicate that the coarse eolian dust sedimentary budget on the Chinese Loess Plateau is dominated by Yellow River-brought sediment (60%-70%). These results emphasize the importance of recycling of fluvial deposits in the loess sedimentary budget. Moreover, our findings confirm minor Qaidam Basin input (~20%) and thus support the existence of an alternative dust-generating storm pathway through the Qaidam Basin and northern Tibetan Plateau, likely active during past glacial and possibly stadial periods. In this regard, the lack of a significant difference in sourcing between glacial (loess) and interglacial (paleosols) deposits is particularly noteworthy. This implies that intense reworking of older loess and paleosol

deposits has additionally served to mix eolian dust and homogenize their provenance signatures. Our findings corroborate the idea that the Chinese Loess Plateau is a dynamic landform where wind deflation, lateral transport by wind and rivers, and aggradation are equally important. Moreover, they suggest that paleoclimatic interpretations based on loess accumulation rates or on eolian dust features might be significantly biased by these recycling effects. Finally, we propose that a significant part of the older, pre-Quaternary deposits surrounding the Chinese Loess Plateau might have been partly cannibalized and recycled in more recent loess deposits following increasing regional aridity throughout the Pliocene-Quaternary.

ACKNOWLEDGMENTS

This research was primarily funded by the U.S. National Science Foundation (NSF grants AGS-1203973 and AGS-1203427). Licht was also funded by a Fyssen Foundation study grant (2014), Kansas University (2015), and Marie Curie fellowship ECAMMETT 656731 (2015–2016). We also acknowledge NSF grant EAR 1338583 for support of the Arizona LaserChron Center. We thank H. Chang, N. Mclean, A. Möller, K. Gallagher, K.C. Beard, M. Pecha, G. Simpson, I. Nurmaya, and C. White for sample collection, prolific discussions, and assistance in the laboratory.

REFERENCES CITED

- Alonso-Zarza, A., Zhao, Z., Song, C., Li, J., Zhang, J., Martin-Perez, A., Martín-García, R., Wang, X., Zhang, Y., and Zhang, M., 2009, Mudflat/distal fan and shallow lake sedimentation (upper Vallesian–Turolian) in the Tianshui Basin, central China: Evidence against the late Miocene eolian loess: Sedimentary Geology, v. 222, p. 42–51, doi:10.1016/j.sedgeo.2009.03.010.
- Amidon, W., Burbank, D., and Gehrels, G., 2005, U-Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya: Earth and Planetary Science Letters, v. 235, p. 244–260, doi:10.1016/j.epsl.2005.03.019.
- Amit, R., Enzel, Y., Mushkin, A., Gillespie, A., Batbaatar, J., Crouvi, O., Vandenberghe, J., and An, Z., 2014, Linking coarse silt production in Asian sand deserts and Quaternary accretion of the Chinese Loess Plateau: Geology, v. 42, p. 23–26, doi:10.1130/G34857.1.
- An, Z., Tunghseng, L., Yanchou, L., Porter, S.C., Kukla, G.H.W.X., Xihao, W., and Yingming, H., 1990, The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China: Quaternary International, v. 7, p. 91–95.
- An, Z., Kutzbach, J., Prell, W., and Porter, S., 2001, Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since late Miocene times: Nature, v. 411, p. 62–66, doi:10.1038/35075035.
- Andersen, T., 2005, Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulations: Chemical Geology, v. 216, p. 249–270, doi:10.1016/j.chemgeo.2004.11.013.
- Bird, A., Stevens, T., Rittner, M., Vermeesch, P., Carter, A., Andò, S., Garzanti, E., Lu, H., Nie, J., Zeng, L., Zhang, H., and Xu, Z., 2015, Quaternary dust source variation across the Chinese Loess Plateau: Palaeogeography, Palaeoclimatology, Palaeococlogy, v. 435, p. 254–264, doi:10.1016/j.palaeo.2015.06.024.
- Botev, Z.I., Grotowski, J.F., and Kroese, D.P., 2010, Kernel density estimation via diffusion: Annals of Statistics, v. 38, p. 2916–2957, doi:10.1214/10-AOS799.
- Che, X., and Li, G., 2013, Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon: Quaternary Research, v. 80, p. 545–551, doi:10 .1016/j.yqres.2013.05.007.

- Clark, M.K., Farley, K.A., Zheng, D., Wang, Z., and Duvall, A.R., 2010, Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages: Earth and Planetary Science Letters, v. 296, p. 78–88, doi:10.1016/j.epsl.2010.04.051.
- Compston, W., and Gallagher, K., 2012, New SHRIMP zircon ages from tuffs within the British Palaeozoic stratotypes: Gondwana Research, v. 21, p. 719–727, doi:10 .1016/j.gr.2011.11.010.
- Craddock, W.H., Kirby, E., Harkins, N.W., Zhang, H., Shi, X., and Liu, J., 2010, Rapid fluvial incision along the Yellow River during headward basin integration: Nature Geoscience, v. 3, p. 209–213, doi:10.1038 /ngeo777.
- Deng, Č., Zhu, R., Verosub, K.L., Singer, M.J., and Vidic, N.J., 2004, Mineral magnetic properties of loess/ paleosol couplets of the central loess plateau of China over the last 1.2 Myr: Journal of Geophysical Research–Solid Earth, v. 109, B01103, doi:10.1029 /2003JB002532.
- Derbyshire, E., Meng, X., and Kemp, R.A., 1998, Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record: Journal of Arid Environments, v. 39, p. 497–516, doi:10.1006/jare .1997.0369.
- Ding, Z., Sun, J., Rutter, N.W., Rokosh, D., and Liu, T., 1999, Changes in sand content of loess deposits along a north-south transect of the Chinese Loess Plateau and the implications for desert variations: Quaternary Research, v. 52, p. 56–62, doi:10.1006/qres.1999.2045.
- Duvall, A.R., Clark, M.K., van der Pluijm, B.A., and Li, C., 2011, Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry: Earth and Planetary Science Letters, v. 304, p. 520–526, doi:10.1016 /j.epsl.2011.02.028.
- Gallagher, K., Charvin, K., Nielsen, S., Sambridge, M., and Stephenson, J., 2009, Markov chain Monte Carlo (MCMC) sampling methods to determine optimal models, model resolution and model choice for earth science problems: Marine and Petroleum Geology, v. 26, p. 525–535, doi:10.1016/j.marpetgeo.2009.01 .003.
- Gehrels, G.E., 2000, Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, *in* Soreghan, M.J., and Gehrels, G.E., eds., Paleozoic and Triassic Paleogeography and Tectonics of Western Nevada and Northern California: Geological Society of America Special Paper 347, p. 1–17, doi:10.1130/0-8137-2347-7.1.
- Gehrels, G., Yin, A., and Wang, X., 2003, Detrital-zircon geochronology of the northeastern Tibetan Plateau: Geological Society of America Bulletin, v. 115, p. 881–896, doi:10.1130/0016-7606(2003)115<0881: DGOTNT>2.0.CO:2.
- Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., McQuarrie, N., and Yin, A., 2011, Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen: Tectonics, v. 30, TC5016, doi:10 .1029/2011TC002868.
- Guo, Z., Ruddiman, W., Hao, Q., Wu, H., Qiao, Y., Zhu, R., Peng, S., Wei, J., Yuan, B., and Liu, T., 2002, Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China: Nature, v. 416, p. 159–163, doi:10.1038/416159a.
- Gylesjö, S., and Arnold, E., 2006, Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau: Global and Planetary Change, v. 51, p. 181– 194, doi:10.1016/j.gloplacha.2006.03.002.
- Han, W., Fang, X., Ye, C., Teng, X., and Zhang, T., 2014, Tibet forcing Quaternary stepwise enhancement of westerly jet and Central Asian aridification: Carbonate isotope records from deep drilling in the Qaidam salt playa, NE Tibet: Global and Planetary Change, v. 116, p. 68–75, doi:10.1016/j.gloplacha.2014.02.006.
- Hoke, G., Schmitz, M., and Bowring, S., 2014, An ultrasonic method for isolating nonclay components from clayrich material: Geochemistry Geophysics Geosystems, v. 15, p. 492–498, doi:10.1002/2013GC005125.

- Jasra, A., Stephens, D., Gallagher, K., and Holmes, C., 2006, Bayesian mixture modelling in geochronology via Markov chain Monte Carlo: Mathematical Geology, v. 38, p. 269–300, doi:10.1007/s11004-005-9019-3.
- Jeong, G.Y., Hillier, S., and Kemp, R.A., 2011, Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau: Quaternary Research, v. 75, p. 245–255, doi:10.1016/j.yqres.2010.09.001.
- Kang, S., Lu, Y.C., and Wang, X.L., 2011, Closely-spaced recuperated OSL dating of the last interglacial paleosol in the southeastern margin of Chinese Loess Plateau: Quaternary Geochronology, v. 6, p. 480–490, doi:10 .1016/j.quageo.2011.04.004.
- Kang, S., Wang, X., and Lu, Y., 2013, Quartz OSL chronology and dust accumulation rate changes since the Last Glacial at Weinan on the southeastern Chinese Loess Plateau: Boreas, v. 42, p. 815–829.
- Kapp, P., Pelletier, J., Rohrmann, A., Heermance, R., Russell, J., and Ding, L., 2011, Wind erosion in the Qaidam Basin, Central Asia: Implications for tectonics, paleoclimate, and the source of the Loess Plateau: GSA Today, v. 21, p. 4–10, doi:10.1130/GSATG99A.1.
- Kapp, P., Pullen, A., Pelletier, J.D., Russell, J., Goodman, P., and Cai, F., 2015, From dust to dust: Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China: Geology, v. 43, p. 835–838, doi:10.1130/G36724.1.
- Kohfeld, K., and Harrison, S., 2003, Glacial-interglacial changes in dust deposition on the Chinese Loess Plateau: Quaternary Science Reviews, v. 22, p. 1859– 1878, doi:10.1016/S0277-3791(03)00166-5.
- Lease, R., Burbank, D., Gehrels, G., Wang, Z., and Yuan, D., 2007, Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet: Geology, v. 35, p. 239–242, doi:10.1130/G23057A.1.
- Lease, R., Burbank, D., Hough, B., Wang, Z., and Yuan, D., 2012, Pulsed Miocene range growth in northeastern Tibet: Insights from Xunhua Basin magnetostratigraphy and provenance: Geological Society of America Bulletin, v. 124, p. 657–677, doi:10.1130/B30524.1.
- Li, G., Pettke, T., and Chen, J., 2011, Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene: Geology, v. 39, p. 199–202, doi:10.1130/G31734.1.
- Licht, A., van Cappelle, M., Abels, H.A., Ladant, J., Trabucho-Alexandre, J., France-Lanord, C., Donnadieu, Y., Vandenberghe, J., Rigaudier, T., Lecuyer, C., Terry, D., Jr., Adriaens, R., Boura, A., Guo, Z., Aung Naing Soe, Dupont-Nivet, G., and Jaeger, J.-J., 2014, Asian monsoons in a late Eocene greenhouse world: Nature, v. 513, p. 501–506, doi:10.1038/nature13704.
- Maher, B.A., and Thompson, R., 1991, Mineral magnetic record of the Chinese loess and paleosols: Geology, v. 19, p. 3–6, doi:10.1130/0091-7613(1991)019<0003: MMROTC>2.3.CO;2.
- Massey, F.J., Jr., 1951, The Kolmogorov-Smirnov test for goodness of fit: Journal of the American Statistical Association, v. 46, p. 68–78, doi:10.1080/01621459 .1951.10500769.
- Métivier, F., Gaudemer, Y., Tapponnier, P., and Meyer, B., 1998, Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China: Tectonics, v. 17, p. 823–842, doi:10.1029 /98TC02764.
- Mroczek, P., 2013, Recycled loesses—A micromorphological approach to the determination of local source areas of Weichselian loess: Quaternary International, v. 296, p. 241–250, doi:10.1016/j.quaint.2013.02.040.
- Nie, J., and Peng, W., 2014, Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and interglacial paleosol on the Chinese Loess Plateau: Aeolian Research, v. 13, p. 71–75, doi: 10.1016/j.aeolia.2014.03.005.
- Nie, J., Peng, W., Moller, A., Song, Y., Stockli, D.F., Stevens, T., Horton, B., Liu, S., Bird, A., Oalmann, J., Gong, H., and Fang, X., 2014, Provenance of the Upper Miocene–Pliocene red clay deposits of the Chinese Loess Plateau: Earth and Planetary Science Letters, v. 407, p. 35–47, doi:10.1016/j.epsl.2014.09.026.
- Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., et al., 2015, Loess plateau storage of northeastern Tibetan Plateau–derived Yellow River

Licht et al.

sediment: Nature Communications, v. 6, p. 8511, doi: 10.1038/ncomms9511.

- Peizhen, Z., Molnar, P., and Downs, W.R., 2001, Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates: Nature, v. 410, p. 891–897, doi:10.1038/35073504.
- Porter, S., 2001, Chinese loess record of monsoon climate during the last glacial-interglacial cycle: Earth-Science Reviews, v. 54, p. 115–128, doi:10.1016/S0012-8252 (01)00043-5.
- Porter, S., and An, Z., 1995, Correlation between climate events in the North Atlantic and China during the last glaciation: Nature, v. 375, p. 305–308, doi:10.1038 /375305a0.
- Pullen, A., Kapp, P., McCallister, A., Chang, H., Gehrels, G., Garzione, C., Heermance, R., and Ding, L., 2011, Quaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications: Geology, v. 39, p. 1031–1034, doi: 10.1130/G32296.1.
- Pullen, A., Ibanez-Mejia, M., Gehrels, G., Ibanez-Mejia, J., and Pecha, M., 2014, What happens when n = 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations: Journal of Analytical Atomic Spectrometry, v. 29, p. 971–980, doi:10 .1039/c4ja00024b.
- Pye, K., 1995, The nature, origin and accumulation of loess: Quaternary Science Reviews, v. 14, p. 653–667, doi:10 .1016/0277-3791(95)00047-X.
- Qiang, X., An, Z., Song, Y., Chang, H., Sun, Y., Liu, W., Ao, H., Dong, J., Fu, C., Wu, F., Lu, F., Cai, Y., Zhou, W., Cao, J., Xu, X., and Ai, L., 2011, New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago: Science China, Earth Science, v. 54, p. 136–144.
- Roe, G., 2009, On the interpretation of Chinese loess as a paleoclimate indicator: Quaternary Research, v. 71, p. 150–161, doi:10.1016/j.yqres.2008.09.004.
- Rohrmann, A., Heermance, R., Kapp, P., and Cai, F., 2013, Wind as the primary driver of erosion in the Qaidam Basin, China: Earth and Planetary Science Letters, v. 374, p. 1–10, doi:10.1016/j.epsl.2013.03.011.
- Song, Y., Fang, X., King, J.W., Li, J., Naoto, I., and An, Z., 2014, Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition: Quaternary Research, v. 81, p. 433–444, doi:10.1016/j.yqres.2013.10.002.
- Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207–221, doi:10.1016/0012-821X(75)90088-6.
- Stevens, T., and Lu, H., 2009, Optically stimulated luminescence dating as a tool for calculating sedimentation rates in Chinese loess: Comparisons with grain-size records: Sedimentology, v. 56, p. 911–934, doi:10.1111/j .1365-3091.2008.01004.x.
- Stevens, T., Palk, C., Carter, A., Lu, H., and Clift, P., 2010, Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons: Geological Society of America Bulletin, v. 122, p. 1331–1344, doi:10.1130/B30102.1.

- Stevens, T., Carter, A., Watson, T., Vermeesch, P., Ando, S., Bird, A., Lu, H., Garzanti, E., Cottam, M., and Sevastjanova, I., 2013, Genetic linkage between the Yellow River, the Mu Us Desert and the Chinese Loess Plateau: Quaternary Science Reviews, v. 78, p. 355–368, doi:10.1016/j.quascirev.2012.11.032.
- Sun, D., Su, R., Bloemendal, J., and Lu, H., 2008, Grainsize and accumulation rate records from late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 264, p. 39–53, doi:10 .1016/j.palaeo.2008.03.011.
- Sun, D., Zhang, Y., Han, F., Zhang, Y., Yi, Z., Li, Z., Wang, F., Wu, S., and Li, B., 2011, Magnetostratigraphy and palaeoenvironmental records for a late Cenozoic sedimentary sequence from Lanzhou, northeastern margin of the Tibetan Plateau: Global and Planetary Change, v. 76, p. 106–116, doi:10.1016/j.gloplacha.2010.12 .006.
- Sun, J., 2002, Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau: Earth and Planetary Science Letters, v. 203, p. 845–859, doi:10 .1016/S0012-821X(02)00921-4.
- Sun, J., Zhang, M., and Liu, T., 2001, Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate: Journal of Geophysical Research, v. 106, p. 10,325–10,333, doi:10.1029/2000JD900665.
- Sun, Y., Lu, H., and An, Z., 2006, Grain size of loess, palaeosol and red clay deposits on the Chinese Loess Plateau: Significance for understanding pedogenic alteration and palaeomonsoon evolution: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 241, p. 129–138, doi:10 .1016/j.palaeo.2006.06.018.
- Sweeney, M.R., and Mason, J.A., 2013, Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA: Journal of Geophysical Research–Earth Surface, v. 118, p. 1460–1471.
- Toggweiler, J., and Russell, J., 2008, Ocean circulation in a warming climate: Nature, v. 451, p. 286–288, doi:10 .1038/nature06590.
- Vandenberghe, J., 2013, Grain size of fine-grained windblown sediment: A powerful proxy for process identification: Earth-Science Reviews, v. 121, p. 18–30, doi: 10.1016/j.earscirev.2013.03.001.
- Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H., Dodonov, A., and Buylaert, J.-P., 2006, Penetration of Atlantic westerly winds into Central and East Asia: Quaternary Science Reviews, v. 25, p. 2380–2389, doi:10.1016/j.quascirev.2006.02 .017.
- Vermeesch, P., 2004, How many grains are needed for a provenance study?: Earth and Planetary Science Letters, v. 224, p. 441–451, doi:10.1016/j.epsl.2004.05 .037.
- Vermeesch, P., 2012, On the visualisation of detrital age distributions: Chemical Geology, v. 312–313, p. 190–194, doi:10.1016/j.chemgeo.2012.04.021.
- Vermeesch, P., 2013, Multi-sample comparison of detrital age distributions: Chemical Geology, v. 341, p. 140– 146, doi:10.1016/j.chemgeo.2013.01.010.

- Vermeesch, P., and Garzanti, E., 2015, Making geological sense of 'Big Data' in sedimentary provenance analysis: Chemical Geology, v. 409, p. 20–27, doi:10.1016/j .chemgeo.2015.05.004.
- van Loon, A., 2006, Lost loesses: Earth-Science Reviews, v. 74, p. 309–316, doi:10.1016/j.earscirev.2005.10.005.
- Wang, J., Wang, Y.J., Liu, Z.C., Li, J.Q., and Xi, P., 1999, Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of Central Asia: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 152, p. 37–47, doi:10.1016/S0031-0182(99)00038-3.
- Wang, L., Lü, H.Y., Wu, N.Q., Li, J., Pei, Y.P., Tong, G.B., and Peng, S.Z., 2006, Palynological evidence for late Miocene–Pliocene vegetation evolution recorded in the red clay sequence of the central Chinese Loess Plateau and implication for palaeoenvironmental change: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 241, p. 118–128, doi:10.1016/j.palaeo.2006.06.012.
- Wang, X., Dong, Z., Zhang, J., and Liu, L., 2004, Modern dust storms in China: An overview: Journal of Arid Environments, v. 58, p. 559–574, doi:10.1016/j.jaridenv .2003.11.009.
- Weislogel, A., Graham, S., Chang, E., Wooden, J., and Gehrels, G., 2010, Detrital zircon provenance from three turbidite depocenters of the Middle–Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production: Geological Society of America Bulletin, v. 122, p. 2041–2062, doi:10.1130/B26606.1.
- Wu, F., Fang, X., Ma, Y., Herrmann, M., Mosbrugger, V., An, Z., and Miao, Y., 2007, Plio–Quaternary stepwise drying of Asia: Evidence from a 3-Ma pollen record from the Chinese Loess Plateau: Earth and Planetary Science Letters, v. 257, p. 160–169, doi:10.1016/j.epsl .2007.02.029.
- Xiao, G., Zong, K., Li, G., Hu, Z., Dupont-Nivet, G., Peng, S., and Zhang, K., 2012, Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau: Geophysical Research Letters, v. 39, p. L20715, doi:10.1029/2012GL053304.
- Yan, Y., Sun, Y., Chen, H., and Ma, L., 2014, Oxygen isotope signatures of quartz from major Asian dust sources: Implications for changes in the provenance of Chinese loess: Geochimica et Cosmochimica Acta, v. 139, p. 399–410, doi:10.1016/j.gca.2014.04.043.
- Yin, A., Dang, Y.-Q., Zhang, M., Chen, X.-H., and McRivette, M.W., 2008, Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction: Geological Society of America Bulletin, v. 120, p. 847–876, doi:10.1130/B26232.1.

SCIENCE EDITOR: AARON CAVOSIE ASSOCIATE EDITOR: AN YIN

MANUSCRIPT RECEIVED 30 JUNE 2015 REVISED MANUSCRIPT RECEIVED 9 NOVEMBER 2015 MANUSCRIPT ACCEPTED 15 DECEMBER 2015

Printed in the USA