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Abstract

Changes in meridional overturning circulation and water mass chemistry can be recorded by oxygen concentrations in the
deep ocean. Because the deep Pacific is the largest ocean reservoir, its oxygen concentrations may be related to global climate
change. In this study, oxygen conditions in the past are reconstructed by contrasting the sedimentary geochemistry of multiple
redox-sensitive trace elements (Mn, Ni, Zn, V corrected for terrigenous and hydrothermal inputs) and authigenic U (aU) from
six sediment cores on the Juan de Fuca Ridge from 2.7-2.8 km depth. We find that Mn and Ni are indicators for oxygen-rich
conditions, while Zn, V, and aU are indicators for oxygen-poor conditions. Relative Redox Potentials (RRPs) for each core
are calculated by converting excess metal fluxes into binary presence/absence designations, weighting each element by the
strength and direction of its redox indication, summing the five elements, and then averaging the data in 5kyr bins. Metal
depositional histories from all six cores demonstrate low oxygen conditions during interglacial periods, particularly during
100–120 ka (MIS5) but also 200–250 ka (MIS7), and high oxygen conditions during glacial periods (MIS2-4 and MIS6). This
redox pattern does not appear to be driven by organic matter flux to the sediment, as reconstructed by three different paleo-
productivity proxies (organic carbon, opal, and excess barium). Instead higher oxygen concentrations on the Juan de Fuca
Ridge may be a result of better ventilation during glacial periods, possibly due to enhanced North Pacific Intermediate Water
formation. Alternatively, sedimentary redox conditions on the Juan de Fuca Ridge may be locally controlled by the deposi-
tion of hydrothermal sulfides from nearby vent fields.
� 2018 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Oxygen concentrations in the deep ocean are an impor-
tant indicator of global climate conditions. While today
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oxygen persists in deepwaters due to the continuous irriga-
tion of more recently ventilated water, changes in circula-
tion geometry in the past could have displaced this supply
pipeline. Reduced ventilation limits the starting oxygen
concentrations, but biological processes are largely respon-
sible for the magnitude of subsequent oxygen depletion as
the water mass transits at depth. The coupling of carbon
and oxygen in respiration may therefore cause oxygen
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depletion coincident with greater carbon storage. Recon-
structions of paleo-redox conditions in the deep waters of
the Pacific can help determine the water mass structure
and chemistry that allowed the ocean to take up so much
CO2 during past glacial periods (Broecker, 1982; Sigman
and Boyle, 2000).

Paleo-oxygen concentrations can be straightforward to
interpret under the right conditions, such as when the onset
of anoxic conditions suffocates benthic organisms and
allows the development and preservation of fine sedimen-
tary laminations (Crusius et al., 2004; Davies et al., 2011).
But where low sedimentation rates limit the record of lam-
inations, oxygen concentrations in the past can be recon-
structed by contrasting the sedimentary geochemistry of
multiple redox-sensitive trace elements (Elderfield, 1985).
Various combinations of V, Mo, U, Re, Cd, Mn, Cu, and
Fe have been employed to reconstruct redox conditions
across the global ocean, including the Cariaco Basin
(Yarincik et al., 2000), the California Margin (McManus
et al., 2005; Shimmield and Price, 1986), and the eastern
margin of North America (Morford et al., 2009), amongst
many others. Beyond the coastal margins, sedimentary
environments near mid-ocean ridges have proven advanta-
geous to paleo-redox studies of deepwaters because
hydrothermal activity increases redox-sensitive trace ele-
ment concentrations that offer stronger indications of past
changes in sedimentary redox conditions than can be
extracted from sediments elsewhere (Mills et al., 2010;
Schaller et al., 2000).

In this study, we use sedimentary concentrations of trace
metals (Mn, Ni, Zn, V) and authigenic U (aU) to recon-
struct redox conditions over the past 250kyr on the Juan
de Fuca Ridge. The antiphased chemistry of aU and Mn
anchor calculations of relative redox potential (RRP),
which records the relative changes in sedimentary redox
conditions based on the presence or absence of aU, Mn,
Ni, Zn, and V. Because sedimentary redox records integrate
changes in bottom water oxygen with the local flux of
reductants (electron donors), the variability in organic mat-
ter and hydrothermal sulfide deposition must be considered
before variability in RRP can be interpreted as changes in
ventilation. We present new records of organic carbon,
excess barium, and opal fluxes to constrain the variability
in paleoproductivity and burial of organic matter in this
region. We also compare the RRP with previously pub-
lished records of hydrothermal activity along the ridge to
investigate whether sulfide deposition may be influencing
the redox history of North Pacific sediments.

2. METHODS

2.1. Core sites and stratigraphy

Samples were taken from six cores on the Juan de Fuca
Ridge (Fig. 1) collected on the SeaVOICE cruise (AT26-19)
of the R/V Atlantis in September 2014. Cores were
retrieved in two E-W transects in a semi-grid on the western
flanks of the ridge and targeted on ridge-parallel crests
(2655–2794 m) to maximize carbonate preservation (Costa
et al., 2016). The average spacing between cores is about
20 km. Age models for the JdFR cores are well-
constrained based on radiocarbon dates, benthic d18O,
and stratigraphically tuned density cycles (Costa et al.,
2016). Dry bulk density and coarse fraction >63 lm
(Costa et al., 2016), as well as bulk particle flux (Costa
and McManus, 2017) all show distinct glacial-interglacial
cycles, with high-density, coarse sediment characterizing
glacial deposition.

2.2. Uranium analyses

Samples (n = 1097) were analyzed for uranium (238U,
235U, 234U) by isotope dilution inductively coupled plasma
mass spectrometry (ICP-MS) following the procedure
described by Costa and McManus (2017). Samples (100
mg) were randomized and spiked with 236U and 229Th
before processing with complete acid digestion and column
chromatography (Fleisher and Anderson, 2003). Isotopes
were measured on an Element 2 ICP-MS at Lamont-
Doherty Earth Observatory (LDEO) of Columbia Univer-
sity. Discrete sediment aliquots (n = 106) of an internal sed-
iment standard (VOICE Internal MegaStandard, VIMS)
were processed and analyzed for quality control. The VIMS
replicates indicate that the analytical procedure and mea-
surement are externally reproducible within 6.2% on 238U
and 3.7% on 232Th (Costa and McManus, 2017). The litho-
genic fraction of uranium was calculated using a detrital
238U/232Th activity ratio of 0.48 (Costa and McManus,
2017), the value which 238U/232Th reaches as the 232Th con-
centration approaches the average lithogenic value (10.7
ppm, Taylor and McLennan, 1995) and similar to other
lithogenic 238U/232Th values from elsewhere in the North
Pacific: 0.5 ± 0.1 (Serno et al., 2015) and 0.53 (Taguchi
and Narita, 1995). Subtracting the lithogenic uranium from
the total uranium concentration determines the concentra-
tion of authigenic uranium (aU). aU fluxes are calculated
using age model based mass accumulation rates (MAR)
derived from the dry bulk density and linear sedimentation
rates (Costa et al., 2016). MAR include both the particle
rain rate through the water column as well as the lateral
particle contributions due to sediment focusing (or winnow-
ing). The total sedimentation rates influence sedimentary
aU precipitation because they control the diffusion depth
of dissolved U(VI) from overlying bottom waters through
pore waters to the redox boundary where reduction to U
(IV) occurs (Anderson, 1982; Anderson et al., 1989b;
Barnes and Cochran, 1990; Klinkhammer and Palmer,
1991). The in situ precipitation of sedimentary aU means
that the total (age model-based) MAR is the appropriate
parameter to use when evaluating the diffusive flux of U
into the sediments. Constant flux proxies, like 230Th, specif-
ically reconstruct the particle rain through the water col-
umn and thus are not relevant to formation of authigenic
metals within the sediment.

2.3. Trace element concentrations

Intensities (count rates) of V, Ni, Zn, Fe, Mn, Ba, and Ti
were measured with an X-ray fluorescence (XRF) core
scanner (ITRAX, Cox Ltd., Sweden) at Lamont-Doherty



Fig. 1. (Left) Longitudinal section of oxygen concentrations from a 500 km swath along 140�W (Garcia et al., 2014). Dashed arrows show
general Pacific meridional overturning circulation. Water masses are labeled as NPDW (North Pacific Deep Water), AAIW (Antarctic
Intermediate Water), and NPIW (North Pacific Intermediate Water). Core locations referred to in this study have been zonally projected onto
the oxygen section (white circles). 1. AT26-19 set of 6 cores (this study) 2. SO202-1-39-3 (Korff et al., 2016) 3. 72DK-9 (Mangini et al., 1990) 4.
ML1208-17PC (Jacobel et al., 2017) 5. Y-71-7-53P (Lund et al., 2016; Schaller et al., 2000) 6. GS7202-35 (Mills et al., 2010) 7. VA13-2
(Mangini et al., 1990). (Right) Bathymetric map of the Cleft Segment, with inset showing the geographic position of the Juan de Fuca Ridge in
the Northeast Pacific Ocean. The ridge can be identified as the NE-SW trending bathymetric high (in yellow), and the axis is identified with a
dashed line. AT26-19 core locations on the western flanks of the ridge are shown with black dots (Costa et al., 2017c). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Earth Observatory of Columbia University (LDEO). Split
core surfaces were smoothed and covered with ChemPlex
Proline transmission film to minimize desiccation during
analysis. XRF was performed at 2 mm resolution, using
an integration time of 2 s and a molybdenum X-ray source
set to 30 kV and 45 mA. XRF intensities were calibrated
using discrete measurements analyzed by flux fusion as pre-
viously described in Costa et al. (2017c). Samples from
05PC, 09PC, and 12PC were selected to cover the full range
of XRF intensities observed in each core, and elemental
concentrations were analyzed by flux fusion following the
procedure of Murray et al. (2000). Dried, homogenized
samples (100 ± 5 mg) were combined with lithium metabo-
rate flux (400 ± 10 mg) in graphite crucibles and fused at
1050 �C for 8–10 min. The graphite crucibles were removed
from the furnace and agitated to ensure aggregation of the
fused material. After reheating to 1050 �C, the fused bead
was dissolved in 10% HNO3, agitated for approximately
10 min, and then filtered and diluted for analysis. Samples
were analyzed on an Agilent 720 Inductively Coupled
Plasma Optical Emission Spectrometer (ICP-OES) at
LDEO, and ICP-OES intensity data were calibrated to con-
centrations with fluxed standard reference materials (JLS-1,
JDO-1, SCO-1, AGV-2, JB1-a, W-2a, BCR, BHVO-2 Sup-
plementary Fig. S1). Empirical calibrations of the XRF
data were generated by least squares linear regression of
the XRF intensities and discrete elemental data. The
XRF records were smoothed at 1 cm scale and interpolated
onto the depths of the discrete samples. Overall the ICP
data provide robust calibrations for the high-resolution
XRF records (Fig. 2). As no inter-core discrepancies
were apparent, the same calibration was applied to all six
cores. Calibrations for Mn (r2 = 0.87), Fe (r2 = 0.92), and
Ti (r2 = 0.86) were previously published (Costa et al.,
2017c).
Total metal concentrations (V, Ni, Zn, Mn, Fe) in pela-
gic sediment may be governed by several different processes,
including variations in hydrothermal activity and lithogenic
inputs in addition to redox conditions. It is therefore neces-
sary to quantitatively account for the lithogenic and
hydrothermal variability of each metal before interpreting
the redox signals. Ti is almost entirely derived from the
lithogenic fraction (Murray et al., 1993), in contrast to
Al, which can be enriched in hydrothermal fluids
(Elderfield et al., 1993; Lunel et al., 1990; Resing et al.,
2015; Von Damm et al., 1985). Multiplying Ti by the aver-
age ratio of upper continental crust (e.g., Fe/Ti of 11.7wt%/
wt%, Taylor and McLennan, 1995) constrains the litho-
genic metal contributions. Additional discussion of litho-
genic endmembers is provided in Costa et al. (2017c).
Despite the potential hydrothermal effects on Al, Al/Ti
ratios vary by only �2% throughout the interval of interest
(Supplementary Data Table S2), which would be consistent
with relatively stable lithogenic endmembers.

Once the lithogenic metal concentration is subtracted
from the total metal concentration, the residual metal con-
centration varies both in terms of hydrothermal activity
and diagenesis. Because iron is the major component of
hydrothermal particulates (Edmonds and German, 2004;
Feely et al., 1994, 1987), scaling the non-lithogenic Fe
record by average metal/Fe ratios within the hydrothermal
plume will approximate the variability in hydrothermal
metal inputs over time. Hydrothermal ratios (75th per-
centile) for Mn/Fe (0.0174 wt%/wt%), V/Fe (28.2 ppm/wt
%), and Zn/Fe (32.7 ppm/wt%) were measured in
hydrothermal particulates from the Cleft Segment at the
Juan de Fuca Ridge (Feely et al., 1994). Ni/Fe ratios were
not reported. Because hydrothermal V/Fe and Zn/Fe are
relatively similar in value, we assume that hydrothermal
Ni/Fe will behave comparably and assign it a value of 30



Fig. 2. Calibration of XRF scan data from counts per second (cps) to mass concentration (ppm) was determined by analyzing discrete
sediment samples by flux fusion and ICP-OES. Pearson’s correlation coefficients (r2) are indicated for each element, all at p < 0.001.
Agreement amongst the three cores (05PC, 09PC, and 12PC) analyzed by discrete analysis justifies the use of a single calibration curve for all
six cores analyzed by XRF (05PC, 09PC, 12PC, 35PC, 38PC, 39BB). Error bars are 2r, not shown when smaller than symbols. Calibrations
for Mn (r2 = 0.87), Fe (r2 = 0.92), and Ti (r2 = 0.86) have been previously published (Costa et al., 2017c).
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ppm/wt%. This assumption is not unreasonable given that
the hydrothermal correction is insensitive to variability in
the metal/Fe ratios within the range of 10–50 ppm/wt%
(Supplementary Fig. S2).

Subtracting the hydrothermal metal component from
the non-lithogenic metal component leaves the residual
excess metal (Mxs) interpreted here as the redistributed
metal content in response to changing redox conditions
within the sediment. As in aU fluxes, excess metal fluxes
are calculated using age-model based mass accumulation
rates derived from the dry bulk density and linear sedimen-
tation rates (Costa et al., 2016)

In summary

Mxsflux ¼ Mtotal � Ti � M
Ti

� �
Lith

� FeH
M
Fe

� �
Hydrothermal

 !
� q � LSR

where M is V, Ni, Mn, or Zn, q is the dry bulk density, and
LSR is the linear sedimentation rate.

2.4. Paleo-productivity proxies

Biogenic opal was measured by alkaline extraction
(Mortlock and Froelich, 1989) at LDEO. Samples were
acidified with dilute hydrochloric acid and then oxidized
with stabilized hydrogen peroxide. The residual sediment
was then extracted in 2 N sodium carbonate for five hours
at 80 �C. A silico-molybdate photoindicator was added to
the leachates, and absorbance intensities at 812 lm were
analyzed on a spectrophotometer. Total replicates (n = 6)
of VIMS indicate that the analytical procedure and mea-
surement are reproducible within ±6.7%.
Organic carbon concentrations were analyzed by com-
bustion on an Element Analyzer at LDEO. Samples were
acidified with dilute hydrochloric acid and then rinsed with
deionized water till neutral pH was achieved. The residual
non-carbonate fraction was freeze-dried and loaded in tin
capsules. Because this analytical procedure has a poor yield
(50% or less), the absolute organic carbon values may not
be accurate and should not be employed in, e.g., direct com-
parisons with other published organic carbon records. For-
tunately, reproducibility within ± 6% on total replicates (n
= 5) of VIMS allows confidence in the temporal trends and
relative variability, as the data are interpreted in this study.

Barium concentrations were measured by XRF and
ICP-OES as detailed in Section 2.3. Excess barium (Baxs)
was calculated by subtracting the lithogenic barium inputs
using the Ti record and a lithogenic Ba/Ti ratio of 1833
ppm/wt% (Taylor and McLennan, 1995). Because these
productivity proxies are delivered to the sediment in a ver-
tical particle rain from the surface ocean, organic carbon,
opal, and Baxs fluxes were calculated using 230Th-
normalized particle fluxes (Costa and McManus, 2017).

3. RESULTS

3.1. Authigenic uranium

Authigenic uranium (aU) is generally low (<1ppm) on
the Juan de Fuca Ridge over the past 500 kyr (Fig. 3,
Supplementary Table S1). This relatively constant back-
ground level is interrupted by peaks in aU that can reach
as high as 5.3 ppm (Fig. 3A). Notably, high aU concentra-
tions only occur in the two highest sedimentation rate
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cores, 09PC and 35PC (Costa et al., 2016) (Fig. 3B),
whereas the other four cores (05PC, 12PC, 38PC, 39BB)
record nearly constant (low) aU concentrations over the
past 500kyr. The highest aU concentrations in 35PC and
09PC occur during Marine Isotope Stage 5 (MIS5, 74–
130 ka), but the two cores record different amplitudes and
durations of the aU peak. In core 09PC, aU rises above
background levels at 122 ka, peaks at 114 ka at 5.3 ppm,
declines to a brief plateau at 109 ka at 2.8 ppm, and then
returns to background aU levels (0.1 ppm) by �90 ka.
Thus, the high aU depositional period appears to last �
32kyr in 09PC. In core 35PC, aU rises above background
levels at 121 ka, peaks at 111 ka at 4.3 ppm, where it
remains until 88.8 ka when it starts gradually declining to
background levels by 61 ka. Therefore, although the
increase in aU concentrations in 35PC occurred at nearly
the same time as in 09PC, the high aU depositional period
lasted � 50 kyr, nearly twice as long and burying twice as
much aU. Core 35PC also records peaks of aU of about
� 2 ppm in the older interglacial period 199–237 ka
(MIS7), which is not found in the other 5 cores. The earliest
peak in aU in this core occurred during 272–306 ka (MIS8),
and it is capped by the major turbidite event at 272 ka
(Costa et al., 2016).
3.2. Trace Metals

3.2.1. Manganese

The redox-mobile fraction of manganese (Mnxs) repre-
sents, on average, 74% of total manganese concentrations
in the sediment (Supplementary Table S2). Mnxs fluxes
average 1.5–3.3 mg/cm2 kyr in all cores except 09PC, where
average Mnxs fluxes are higher (5.0 mg/cm2 kyr) and peak
fluxes can reach as high as 35.7 mg/cm2 kyr (Fig. 4). In gen-
eral, Mnxs fluxes are lower during interglacial periods than
during glacial periods, and this cycling has the greatest
range in the highest accumulation rate cores (09PC and
35PC). For example, in 09PC, Mnxs fluxes average 1.9
mg/cm2 kyr in MIS5 (100–120 ka) and 11.2 mg/cm2 kyr in
Fig. 3. Authigenic uranium (aU) records from the Juan de Fuca Ridge. (A
and 35PC, while the other cores show relatively constant and low aU buri
with gray bars. (B) aU concentrations vs. sedimentation rates, averaged o
preserved in the sedimentary record when sedimentation rates are greate
MIS2-4 (20–60 ka), a nearly tenfold increase in Mnxs flux.
Glacial-interglacial variability is damped in the oldest part
of the core (>300 ka).

3.2.2. Nickel

The redox-mobile fraction of nickel (Nixs) represents, on
average, 57% of total nickel concentrations in the sediment
(Supplementary Table S2). Nixs fluxes average 24–118 lg/
cm2 kyr in all cores (Fig. 4). Peak fluxes reach as high as
625 lg/cm2 kyr, and high frequency variability is particu-
larly prominent in the high sedimentation rate cores
(09PC, 35PC). Low sedimentation rate cores, notably
12PC and 38PC, record relatively constant Nixs deposition
(e.g., �11 to 78 lg/cm2 kyr in 12PC) compared to higher
sedimentation rate cores (e.g., 7.7 to 625 lg/cm2 kyr in
09PC). The Nixs and Mnxs fluxes appear to be correlated
over the last glacial cycle, with the highest correlation (r2

= 0.67) of any two redox-sensitive elements (Fig. 5). From
150 to 250 ka, this relationship seems to reverse, with higher
Mnxs fluxes in MIS6 (150–200 ka) and MIS8 (250–300 ka),
and higher Nixs fluxes in MIS7 (200–250 ka).

3.2.3. Zinc

The redox-mobile fraction of zinc (Znxs) represents, on
average, 32% of total zinc concentrations in the sediment.
Znxs fluxes average 20–83 lg/cm2 kyr in all cores (Supple-
mentary Table S2 and Fig. 4), with variability scaling with
sedimentation rate as observed in Nixs fluxes. Peak fluxes
reach as high as 354 lg/cm2 kyr in 35PC, the core that also
demonstrates the greatest dynamic range. Znxs fluxes are
better correlated with aU fluxes (r2 = 0.47) and Nixs fluxes
(r2 = 0.47) than with Mnxs fluxes (r

2 = 0.17) (Fig. 5). High
Znxs fluxes (greater than 120 lg/cm2 kyr) occur during the
last interglacial periods (MIS5), with several cores record-
ing a peak at 110 ka. The duration of this high flux period
scales with that of the aU fluxes, lasting the longest in 35PC
(�50 kyr) and in 09PC (�30 kyr), with the other cores only
recording a brief event. Znxs fluxes are also elevated in
MIS7 in 35PC, peaking at 200 lg/cm2 kyr at 214 ka, coinci-
dent with the high aU fluxes preserved in that core.
) Peaks in aU occur during the last interglacial period in cores 09PC
al over the entire 500kyr period. Interglacial periods are highlighted
ver marine isotope stages (MIS). High aU concentrations are only
r than 2 cm/kyr (dashed line).



Fig. 4. Excess trace element fluxes over the past 500 kyr. Fluxes are calculated using age-model based mass accumulation rates. Mnxs and Nixs
fluxes are generally higher during glacial periods (MIS2-4 and MIS6) while Znxs, Vxs, and aU fluxes are higher during interglacial periods
(MIS5 and MIS7). This variability is consistent with higher sediment oxygen concentrations during glacial periods and lower oxygen
concentrations during interglacial periods. The presence of negative deposition rates, particularly in the oldest part of the record (>400 ka),
may indicate (1) net loss of element from the sediment, presumably through diffusion to the water column, or (2) much lower hydrothermal
metal/Fe ratios are present during that interval. Gray bars highlight interglacial periods, as identified by odd marine isotope stages (MIS).
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3.2.4. Vanadium

The redox-mobile fraction of vanadium (Vxs) represents,
on average, 32% of total vanadium concentrations in the
sediment. Vxs fluxes average 22–70 lg/cm2 kyr in all cores
(Supplementary Table S2 and Fig. 4), and the overall lower
fluxes lead to more similar depositional records from the
high and low sedimentation rate cores. Peak fluxes reach
as high as 195 lg/cm2 kyr in 35PC, the core that also
demonstrates the greatest dynamic range. Vxs fluxes are
better correlated with aU fluxes (r2 = 0.34), Znxs fluxes



Fig. 5. Scatter plots showing relationships between Mnxs, Nixs, Znxs, Vxs, and aU fluxes on the Juan de Fuca Ridge. Mnxs and Nixs fluxes have
the highest correlation (r2 = 0.67), while Mnxs and aU fluxes have no correlation at all (r2 = 0.00). Znxs and Vxs fluxes are better correlated
with aU fluxes than with Mnxs fluxes. All correlations are at p < 0.001.
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(r2 = 0.56), and Nixs fluxes (r
2 = 0.41) than with Mnxs fluxes

(r2 = 0.15) (Fig. 5). High Vxs fluxes (greater than 80 lg/cm2

kyr) occurred during oxygen poor interglacial periods
(MIS5, MIS7) and low Vxs fluxes (below 60 lg/cm2 kyr)
occurred during oxygen rich glacial periods (MIS2-4,
MIS6). High fluxes of Vxs during interglacial periods record
a more square waveform than either aU or Znxs, which tend
to peak in the middle of the oxygen poor interval.
Fig. 6. Comparison of paleo-productivity records from the Juan de
Fuca Ridge: organic carbon fluxes, opal fluxes, and Baxs fluxes.
Gray bars highlight interglacial periods, as identified by odd
marine isotope stages (MIS). One opal datapoint greater than 40
mg/cm2 kyr is not shown (63 mg/cm2 kyr at 12.4 ka).
3.3. Productivity

3.3.1. Organic Carbon

Organic carbon fluxes range from 2.2 to 8.9 mg/cm2 kyr,
but substantial scatter within the data suggests that a com-
posite record may be more representative of the regional
variability than that of any one individual core (Fig. 6).
The data from the four cores examined were averaged
(mean) within 5 kyr bins to create one regional record
(black line, Fig. 6). Organic carbon fluxes are relatively
low (less than 4 mg/cm2 kyr) before 180 ka, but low resolu-
tion in this interval may alias higher frequency variability.
From 180 ka onwards, the composite record demonstrates
�25 kyr cycles between relatively low organic carbon fluxes
(4.3 mg/cm2 kyr) and relatively higher organic carbon
fluxes (5.9 mg/cm2 kyr). The organic carbon flux peaks
occur at 10, 35, 75, 100, 125, and 160 ka. Maximum organic



86 K.M. Costa et al. /Geochimica et Cosmochimica Acta 236 (2018) 79–98
carbon fluxes (greater than 8 mg/cm2 kyr) occur just follow-
ing the two glacial terminations, at 127 ka and 9.5 ka.

3.3.2. Opal

Fluxes of opal (biogenic silica), unlike organic carbon,
are relatively consistent amongst the six different cores
and show little to no temporal variability older than 50
ka (Fig. 6). Individual data hover between 5–15 mg/cm2

kyr throughout the greater portion of the record, with the
compiled data (binned as in the organic carbon fluxes) aver-
aging around 10–11 mg/cm2 kyr. The amplitude of orbital
scale variability is quite muted, but some of the features
in the opal flux record do align with those of the organic
carbon record. During the early last interglacial (120–130
ka), several high opal flux values coincide with the slightly
elevated organic carbon fluxes at that time. Opal fluxes
increase from 110 ka (8.6 mg/cm2 kyr) to local maxima at
80 ka and 65 ka (12.5–12.6 mg/cm2 kyr) before reaching a
minimum at 50 ka (7.9 mg/cm2 kyr). After 50 ka, there is
an upward trend in opal fluxes that reaches a maximum
(23.7 mg/cm2 kyr) in the early Holocene � 8.9 ka, approxi-
mately the top of the record. Overall, there appears to be a
nearly exponential decay in opal flux from the most recent
period (0–20 ka, 22 mg/cm2 kyr) to the oldest part of the
record (200–250 ka, 5.3 mg/cm2 kyr).

3.3.3. Excess barium

Excess barium (Baxs) fluxes show a much more consis-
tent pattern amongst the six different cores, which have
been averaged (mean) in 1kyr bins to produce a single
regional Baxs stack (Fig. 6). Background fluxes of Baxs
are between 1.1 and 1.3 mg/cm2 kyr, and this relatively con-
stant baseline is punctured by only four prominent high flux
features. Three are productivity spikes at 249 ka, 130 ka
and 17 ka that occur during late deglaciation or early inter-
glacial periods. The fourth feature is a broad productivity
maximum that rises at 93 ka, peaks at 78 ka (1.8 mg/cm2

kyr), and returns to background levels by 56 ka. This peak
may be related to the much lower amplitude features in the
organic carbon flux and opal flux records 65–80 ka.

4. DISCUSSION

4.1. Precipitation and preservation of authigenic uranium

In oxygen-rich seawater, hexavalent uranium forms a
highly soluble carbonate species [UO2(CO3)3]

4�

(Langmuir, 1978) that imparts conservative behavior such
that dissolved uranium concentrations scale with salinity
in the water column (Owens et al., 2011). Within oxy-
genated porewaters, dissolved uranium maintains relatively
high concentrations, but if the oxygen pool within the sed-
iment pile becomes depleted, e.g. by benthic respiration,
soluble U(VI) reduces to insoluble U(IV) and precipitates
as solid UO2 (Anderson, 1982; Anderson et al., 1989a;
Morford and Emerson, 1999). This uranium reduction
requires exceptionally low oxygen concentrations, equiva-
lent to those required for iron reduction, Fe(III) to Fe(II)
(Barnes and Cochran, 1990; Crusius et al., 1996; Zheng
et al., 2002a), or the even lower oxygen conditions of sulfate
reduction, S(VI) to S(-II) (Klinkhammer and Palmer, 1991).
Dissimilatory iron-reducing microorganisms such as
Clostridium sp., Desulfovibrio sp., and Shewanella sp. likely
facilitate the formation of reduced uranium precipitates by
utilizing dissolved uranium as an electron acceptor to fuel
their chemolithotrophic growth (Francis et al., 1994;
Ganesh et al., 1997; Lovley et al., 1991; Sani et al., 2004).
Although abiotic surface-catalyzation of uranium reduction
is also possible (Kochenov et al., 1977; Liger et al., 1999;
Nakashima et al., 1984), the low temperature sedimentary
conditions are suboptimal for kinetically relevant inorganic
uranium reduction compared to biologically mediated ura-
nium reduction (Anderson et al., 1989a, 1989b; Cochran
et al., 1986; Lovley et al., 1991; Tribovillard et al., 2006).
Once uranium reduction commences, a steep uranium con-
centration gradient forms in the porewater along which
additional soluble U(VI) will diffuse from the water column
to support continued precipitation of authigenic U (aU) in
the low oxygen zone (Anderson, 1982; Anderson et al.,
1989b; Barnes and Cochran, 1990; Klinkhammer and
Palmer, 1991). This diffusion-dependent, but otherwise
unlimited, uranium source can thus create sedimentary
aU peaks substantially enriched over U concentrations typ-
ically found in biogenic or lithogenic phases.

The disparate records of aU concentration from the six
different cores (Fig. 3) most likely reflect the secondary
effects of diagenesis on the preservation of aU in the sedi-
ment (Fig. 7). While the reduction of U occurs slowly with-
out biological mediation, the kinetics of aU oxidation from
U(IV) back to soluble U(VI) appear to be quite fast
(Anderson et al., 1989a; Cochran et al., 1986), creating
the phenomenon known as ‘‘burndown” (Jung et al.,
1997; Mangini et al., 2001). If oxygen returns after some
transient hypoxic period of aU deposition, that oxygen will
diffuse into the sediment, oxidize uranium, and mobilize it
into porewaters (McManus et al., 2005). Redissolution of
U into porewaters reverses the concentration gradient with
the overlying bottom waters so that U diffuses upwards and
escapes into the water column (Mangini et al., 2001; Zheng
et al., 2002b). Fluxes of U out of recently oxidized sedi-
ments have been observed in seasonally anoxic basins that
experience cyclic aU deposition and reoxygenation
(Anderson et al., 1989b; Cochran et al., 1986;
Klinkhammer and Palmer, 1991; McManus et al., 2005;
Zheng et al., 2002b). The loss of aU back to porewater
may compromise sedimentary records of aU as a complete
history of redox conditions (Mangini et al., 2001;
McManus et al., 2005). If the aU is completely remobilized,
its sedimentary record is eliminated entirely. For example,
it is possible that aU precipitated in cores 05PC, 12PC,
38PC, and 39BB during MIS5, but subsequent reoxygena-
tion of those sites obliterated the aU from their sedimentary
records. Partial remobilization of aU may leave an aU
record that does not extend as far in the sediment pile, as
in 09PC relative to 35PC, and migration of U-rich porewa-
ter deeper in the sediment column can cause the precipita-
tion of a secondary aU peak where the porewaters re-
encounter reducing conditions (Mangini et al., 2001). This
secondary peak may then stratigraphically pre-date the
actual onset of reducing conditions (Jacobel et al., 2017;



Fig. 7. Effect of burndown on aU preservation in sediments with
varying sedimentation rates. I. All cores experience 10kyr of
reducing conditions under which aU precipitates in the sediment.
II. When oxygen subsequently returns to the sediment, bioturba-
tion assists oxygen penetration down to 10 cm depth. In the
presence of oxygen, aU remobilizes and diffuses out of the
sediment. III. The preserved aU record depends on the sedimen-
tation rate of the core. When sedimentation rates are low (A), no
aU record may survive the re-oxygenation of the sediment pile.
When sedimentation rates are higher (B and C), some aU is
preserved in the sediment, but the record does not extend the full
10kyr duration of the reducing conditions.
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Mills et al., 2010). These combined diagenetic effects sug-
gest that relict aU peaks found in sedimentary records
may be skewed towards lower amplitude, shorter duration,
and earlier timing than the reducing conditions existed
(Morford et al., 2009).

The extent to which burndown will alter the sedimentary
aU record depends on both the organic carbon content
(Mangini et al., 2001) and the sedimentation rate
(Elderfield, 1985). Respiration of organic carbon in sedi-
ment consumes pore water oxygen and thus inhibits its
availability to remobilize aU. Because higher organic car-
bon contents contribute to maintaining low oxygen condi-
tions in the sediment, more intense burndown of aU will
occur in sediments with low organic carbon fluxes (Jung
et al., 1997; Mangini et al., 2001). The Juan de Fuca cores,
however, are all proximal to one another (<30 km), and so
variability in organic carbon delivery to the sediment is
unlikely to explain the different degrees of burndown expe-
rienced amongst the six cores. Instead, they are subject to
rates of burndown that are most likely determined by their
highly variable sedimentation rates (Costa et al., 2016).

Low-sedimentation-rate sites are susceptible to complete
redissolution of aU because their sedimentary aU pile will
be relatively thin (Fig. 7A). After 10kyr of reducing condi-
tions, a sediment core with 1 cm/kyr sedimentation rate will
only contain 10 cm of sediment with elevated aU. When
bottom waters reoxygenate, bioturbation may pump the
oxygen-rich water through the mixed layer (10 cm, in this
example) and facilitate aU oxidation and diffusion out of
the sediment (McManus et al., 2005; Morford et al., 2009;
Shimmield and Price, 1986; Zheng et al., 2002b). When sed-
imentation rates are higher (Fig. 7B and C), some of the aU
is buried deep enough to be protected from oxygen expo-
sure, but the duration of the preserved aU record is still
shorter (5 kyr or 6.7 kyr) than the actual reducing condi-
tions persisted (10 kyr). Previous studies have suggested
that authigenic U preservation is compromised at sedimen-
tation rates less than 2 cm/kyr (Mangini et al., 2001), and
indeed, substantial aU burial on the JdFR only seems to
occur when sedimentation rates are higher than 2 cm/kyr
(Fig. 3B). The proximity of the six cores suggests that any
change in redox conditions should be coincidentally
observed in all six cores, but only the two cores with high
sedimentation rates (�3 cm/kyr) retain an aU signal dur-
ing, e.g., MIS5. The older interglacial aU peak (MIS7) is
only observed in 35PC, which maintains a sedimentation
rate >2 cm/kyr in these intervals while even 09PC does
not have high enough sedimentation rates to retain aU.
The anomalous glacial peak (MIS8), also in 35PC, may
be an artifact of the turbidite at 272 ka (Costa et al.,
2016), which deposited 10 s of centimeters of sediment
nearly instantaneously and thus cut off the porewater
exchange with the overlying water column. Overall, it is
likely that all six cores experienced high aU deposition dur-
ing interglacial periods, but subsequent reoxygenation com-
bined with intense bioturbation (10–15 cm, Costa et al.,
2017b) removed the aU records from the slow-
accumulating cores (05PC, 12PC, 38PC, 39BB). Thus, while
the presence of aU is a good indicator for low-oxygen con-
ditions, the absence of aU does not necessarily equate with
persistent high-oxygen conditions.

4.2. Other trace metal (Mn, Ni, Zn, V) evidence for redox

changes over time

While aU can provide an excellent redox history, sedi-
mentation rates across much of the ocean, and particularly
in the Pacific, fall below the 2 cm/kyr threshold for diage-
netic resilience. In these regions, other redox-sensitive met-
als can be combined with aU to constrain the variability in
sedimentary oxygen concentrations over time. We investi-
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gate the utility of Mn, Zn, Ni, and V, all of which can be
analyzed by high-resolution core-scanning XRF, as candi-
dates for fast, accessible, and low-cost redox indicators in
the near ridge sedimentary environment. Detailed trace
metal behavior in sediments has been previously reviewed
(e.g., Morford and Emerson, 1999; Schaller et al., 2000;
Tribovillard et al., 2006; Morford et al., 2009; Mills et al.,
2010), so only a synopsis of the relevant elements is
included here.

4.2.1. Manganese

Mn is a major component of hydrothermal discharge,
and most hydrothermal manganese in a plume is present
in the dissolved form: >75% near the vent and �50% in
the plume on the EPR (Fitzsimmons et al., 2017) and gen-
erally >50% on the JdFR (Feely et al., 1994; Seyfried et al.,
2003; Zheng et al., 2017). Oxidation of Mn occurs slowly
via microbial catalyzation (Cowen et al., 1986; Dick
et al., 2009; Tebo et al., 2004), and hydrothermal Mn is gen-
erally deposited to the underlying sediments as oxy-
hydroxide particles rather than as sulfides (Von Damm
et al., 1998, 1985). Under changing redox conditions, sedi-
mentary Mn responds in stark contrast to U. Mn solubility
increases when it is reduced from Mn(IV) to Mn(II)
(Froelich et al., 1979), so that it will mobilize out of sedi-
ment at the same time that aU is precipitating (Burdige
and Gieskes, 1983; Lynn and Bonatti, 1965). Mn(II) does
not substantially complex with organic matter or sulfides
(Huerta-Diaz and Morse, 1992; Middelburg et al., 1987;
Tribovillard et al., 2006) and only marginally reacts with
carbonate (Boyle, 1983; Pedersen and Price, 1982). Sedi-
ments under reducing, noneuxinic conditions easily become
depleted in Mn as it freely diffuses upward and escapes to
the water column (e.g., Scholz et al., 2013; Shimmield and
Price, 1986). Alternatively, when the oxygen pool within
the sediment pile is high, particulate Mn oxy-hydroxides
will be retained with the sediment while aU is mobilizing
out of the sediment. Thus, redox driven diagenesis should
result in anti-correlated Mn and aU profiles in sedimentary
records, and coupling of these two redox indicators is a
strategy often employed in pelagic sediment in which aU
records are suspected to be influenced by preservation arti-
facts (e.g., Mangini et al., 2001; Morford et al., 2009).

The contrasting behavior of Mn and aU is apparent on
the Juan de Fuca Ridge (Fig. 4 and Supplementary
Table S2). Where aU concentrations are high (last inter-
glacial, MIS5), Mnxs fluxes are at their lowest (less than
4 mg/cm2 kyr). Where aU concentrations are low (glacial
periods, MIS2-4 and MIS6), Mnxs fluxes are high, greater
than 5 mg/cm2 kyr and spiking at as much as 25 mg/cm2

kyr. These trends in aU and Mnxs fluxes are demonstrated
by the extreme division (anti-correlation) between aU and
Mnxs fluxes (Fig. 5). Lower than average burial of
hydrothermal Mn during interglacial periods suggests irre-
versible loss of Mn through diffusion back to the water col-
umn under reducing conditions. Excess burial during
glacial periods may indicate precipitation of dissolved Mn
out of seawater, possible due to the greater reservoir of dis-
solved hydrothermal Mn than other dissolved hydrother-
mal metals (Butterfield et al., 1997; Massoth et al., 1994).
We therefore interpret high Mnxs fluxes as strong evidence
for oxidizing conditions.

4.2.2. Nickel

In the typical pelagic sediments of the abyssal ocean,
sedimentary Ni concentrations are generally low (20 ppm
in upper continental crust, Taylor and McClennan, 1995)
and often not reported (or perhaps, not analyzed). Ni is
not particularly soluble, and it is primarily sourced from
deposition of lithogenic material, with additional contribu-
tions from organic matter in regions like continental mar-
gins with high organic fluxes (Calvert and Pedersen, 1993;
Westerlund et al., 1986). In the near-ridge environment,
sedimentary Ni concentrations are elevated due to scaveng-
ing of Ni from seawater by Fe oxyhydroxides (Dunk and
Mills, 2006; Ford et al., 1999) and/or Mn oxyhydroxides
(Kuhn et al., 2000; Metz et al., 1988). Increasing particulate
Ni concentrations with increasing distance from the source
vent are consistent with a hydrogenous rather than
hydrothermal source of Ni (Dymond, 1981; Metz et al.,
1988). This affiliation with hydrothermal particles increases
the sedimentary inventory of Ni, which can subsequently be
redistributed as a result of changing redox conditions.

Ni only has one prevalent oxidation state, Ni(II), and so
its behavior in response to changing redox conditions is not
geochemically inherent. Empirical evidence suggests that Ni
remobilization may be largely controlled by co-
precipitation and adsorption processes associated with the
redox cycling of Mn (Dunk and Mills, 2006; Elderfield,
1985; Muñoz et al., 2012; Tribovillard et al., 2006). This
affiliation between Ni and Mn is also observed on the Juan
de Fuca Ridge (Figs. 4 and 5): high Nixs fluxes occur simul-
taneously with high Mnxs fluxes during the last two glacial
periods (MIS2-4, MIS6), and low Nixs fluxes (below 100 lg/
cm2 kyr) coincide with low Mnxs fluxes (and high aU) dur-
ing the last interglacial (MIS5). This correspondence sug-
gests that Ni is predominantly associated with Mn oxides
(as on the East Pacific Rise, Dunk and Mills, 2006), and
that when Mn remobilizes in the sediment under reducing
conditions, so does Ni (Feely et al., 1994; Santos-
Echeandia et al., 2009; Shaw et al., 1990). The correlation
between Ni and Mn appears weaker in older periods, par-
ticularly in MIS7 where low Mnxs fluxes seem to coincide
with slightly elevated Nixs fluxes and elevated aU fluxes.
This behavior may indicate that complexation with organic
matter (Calvert and Pedersen, 1993; Elderfield, 1981; Olson
et al., 2017; Westerlund et al., 1986) or incorporation into
relatively insoluble sulfides (Dyrssen and Kremling, 1990;
Huerta-Diaz and Morse, 1992) may influence the redox dis-
tribution of Ni independently of Mn. However, the domi-
nant redox mobilization of Ni appears to be in affiliation
with Mn, and so we cautiously interpret high Nixs fluxes
as evidence for oxidizing conditions.

4.2.3. Zinc

Unlike Mn or Ni, the primary source of Zn in the near
ridge environment is hydrothermal sulfides, which precipi-
tate in the buoyant plume shortly after being emitted from
the vent (Edmonds and German, 2004; Feely et al., 1994;
Findlay et al., 2015; German et al., 1991). Close to the vent,
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80–90% of the emitted Zn is precipitated (German et al.,
2002), primarily into sphalerite rather than pyrite or chal-
copyrite (Findlay et al., 2015), but Fe may dope the spha-
lerite or circumprecipitate as an iron sulfide around the
existing zinc sulfides (Findlay et al., 2015; Koski et al.,
1994; Scott, 1983). The remaining 10–20% of emitted
hydrothermal Zn may be scavenged by iron oxyhydroxides
(German et al., 2002, 1991; Trocine and Trefry, 1988), sta-
bilized as a dissolved species by chloro-complexation
(Seewald and Seyfried, 1990; Trefry et al., 1994; Von
Damm and Bischoff, 1987), or complexed with organic mat-
ter (Little et al., 2015). Dissolved Zn has been observed over
4000 km away from its hydrothermal origin (Roshan et al.,
2016), but particulate Zn/Fe ratios in the plume decrease as
the plume ages, likely due to Zn redissolving or settling out
faster than Fe (Feely et al., 1994; Roshan et al., 2016;
Trocine and Trefry, 1988).

Once deposited in the sediment, Zn is likely to be most
mobile under oxidizing conditions that are corrosive to
hydrothermal sulfides. Like Ni, Zn only has one oxidation
state, Zn(II), and its redox sensitivity is largely controlled
by its chemical environment. When sulfides are oxidized
to sulfates, Zn will be released to porewaters where it can
migrate out of the sediment, thus creating low Zn concen-
trations under high oxygen conditions. This result is similar
to that observed in aU, and indeed Znxs fluxes show the
same basic patterns as aU fluxes (r2 = 0.47, Figs. 4 and
5). High Znxs fluxes (greater than 120 lg/cm2 kyr) occur
during the last interglacial periods (MIS5), with several
cores recording a peak at 110 ka coincident with the aU
peak. At the same time, there appears to be a component
of the Znxs fluxes that is correlated with Mnxs fluxes, despite
the poor overall correlation (r2 = 0.17). This Mn-driven
redox behavior is particularly evident in 09PC in the last
60kyr, during which Znxs fluxes remain relatively high
(>80 lg/cm2 kyr) despite aU fluxes returning to back-
ground levels. This behavior may reflect limited diffusion
of dissolved Zn in porewaters, such that the mobilized Zn
during high oxygen periods may not have been able to
escape the sediment pile at high accumulation rate sites (like
09PC). Alternatively, if sphalerite is only a small proportion
of the total sulfide population, then Znxs fluxes may be
influenced by sulfide capture (Huerta-Diaz and Morse,
1992), in which mobile Zn within porewaters can be pyri-
tized by free sulfide ions released from other sulfide species.
Overall the correlation between aU and Znxs fluxes suggests
a primary sensitivity to reducing conditions, and so we ten-
tatively interpret high Znxs fluxes as evidence for reducing
conditions.

4.2.4. Vanadium

V, like Ni, is a hydrogenous metal that is scavenged
from the water column by hydrothermal particulates, pri-
marily iron oxyhydroxides (Morford and Emerson, 1999;
Rudnicki and Elderfield, 1993; Schaller et al., 2000;
Trocine and Trefry, 1988). Because seawater V concentra-
tions are relatively low, sedimentary V concentrations due
to scavenging tend to have low signal to noise ratios that
can be difficult to identify and interpret. In the near ridge
environment, high fluxes of hydrothermal iron may supply
sufficient V that subsequent redox redistribution within the
sedimentary pile can be distinguished. V becomes less sol-
uble when it is reduced from V(V) to V(IV) (Calvert and
Pedersen, 1993; Morford and Emerson, 1999), at which
point it behaves like U (also IV in its reduced state), so that
high sedimentary Vxs fluxes would be associated with low
oxygen conditions. Furthermore, the redox threshold of V
reduction is thought to be lower than that of Fe or Mn
but higher than that of U (Morford and Emerson, 1999;
Shaw et al., 1990), making it, theoretically, a sensitive indi-
cator for the timing of redox transitions from aU precipita-
tion to Mn retention. Indeed, on the Juan de Fuca Ridge,
Vxs fluxes show the same basic patterns as Znxs and aU
fluxes, with high Vxs fluxes during MIS5 and MIS7 coinci-
dent with peaks in aU (Fig. 4).

However, sedimentary V is often confounded by other
processes that can affect both its delivery to the sediment
and its response to changes in redox conditions. These com-
plications are evident in the component of Vxs fluxes,
mostly in 09PC, that is correlated with Mnxs fluxes
(Fig. 5). This component may reflect a susceptibility of V
to Mn precipitation and dissolution cycles (Mills et al.,
2010), such that V burial may actually be better preserved
in oxic sediments than in anoxic sediments (Dunk and
Mills, 2006). Furthermore, the efficiency of V scavenging
from seawater is inversely dependent on phosphate concen-
trations (Edmonds and German, 2004; Feely et al., 1994),
with which V competes for adsorption sites on iron oxyhy-
droxide particles (Dunk and Mills, 2006). Because phos-
phate is more readily scavenged than vanadate, higher
phosphate concentrations may result in lower particulate
V/Fe within hydrothermal plumes (Edmonds and
German, 2004; Feely et al., 1994). A consequence of this
exchange is that sedimentary Vxs fluxes may be recording
changes in deep water nutrient concentrations rather than
sediment redox variability. These factors all complicate
the straightforward interpretation of V as a redox proxy,
but its relationship with aU suggests that there is a redox
signal also playing a role in Vxs fluxes. We therefore tenta-
tively include Vxs fluxes in our redox reconstructions, with
high Vxs fluxes as possible evidence for reducing conditions.

4.3. Relative Redox Potential (RRP) over the past 250 kyr

Because redox reactions proceed too slowly to achieve
thermodynamic equilibrium (Balzer, 1982; Lindberg and
Runnells, 1984; Postma, 1993), it is nearly impossible to
reconstruct a precise paleo-redox history in absolute oxygen
concentrations. Instead, we combine the information from
multiple redox-sensitive elements (Mn, Ni, Zn, V, aU) to
create a probabilistic relative redox potential (RRP) on
an arbitrary scale. This conservative approach, outlined
below, accommodates the many uncertainties associated
with paleo-redox reconstructions. For example, the miner-
alogy and complexation of each element, which can affect
the desired redox state and the kinetics of reaction, are
poorly constrained, and mineralogical analyses on existing
sediment may not be able to diagnose initial compositions
or the formation of diagenetic ghost phases (like pyrite)
that may have subsequently redissolved (Yarincik et al.,
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2000). We focus this calculation on the last 250 kyr, for
which aU variability is present. As previously mentioned
(Section 4.1), the absence of aU (i.e., older than 250 ka)
may be a diagenetic artifact and should not be interpreted
as reflecting continuous high oxygen conditions.

Relative Redox Potentials (RRPs) for each core were
calculated by converting Mnxs, Nixs, Vxs, Znxs and aU
fluxes into binary presence/absence designations, weighting
each element by the strength and direction of its redox indi-
cation, summing the five elements, and then averaging the
data in 5kyr bins. Binary fluxes were assigned as follows:
0 for any flux below the mean for that element in that core,
and 1 for any flux above that mean. To create an arbitrary
scale in which positive values are more oxidizing and nega-
tive values are more reducing, the following weights were
employed: Mn = 2 (strong evidence for high oxygen condi-
tions), Ni = 1 (weak evidence for high oxygen conditions),
Zn = �1 (weak evidence for low oxygen conditions), V =
�1 (weak evidence for low oxygen conditions) and aU =
�2 (strong evidence for low oxygen conditions). The goal
is to weight the elemental evidence of which we are more
confident in a redox interpretation (aU and Mn) over those
that are more tentative (Zn, V, Ni). When summed within
each core, the elements create a quantized RRP with possi-
ble values limited to integers between �4 and 3 (Fig. 8A).
The six cores were then averaged (mean) within each 5kyr
bin to generate a single (unquantized) regional RRP
(Fig. 8B). The RRP results are not sensitive to the inclusion
of any one specific element (Supplementary Fig. S3), and
they are robust even in the low sedimentation rate cores
with poor preservation of aU (Supplementary Fig. S4).
The results are further corroborated by RRPs calculated
Fig. 8. Relative redox potentials (RRPs) for individual cores (A) and the
by summing presence/absence records of each excess metal flux weighted
and U = �2). Individual records were calculated on a point-by-point basi
measurements. Individual records (A) were averaged (mean) within 5ky
constrained by 11 datapoints, on average, and up to 45 datapoints. Posi
with metal/Mn ratios (Supplementary Fig. S5) or metal
concentrations on a carbonate free basis (Supplementary
Figs. S6 and S7).

This analysis demonstrates that the metal depositional
histories from all six cores are consistent with low sedimen-
tary oxygen conditions during interglacial periods, particu-
larly during 100–120 ka (MIS5) but also 200–250 ka
(MIS7). The records do not extend sufficiently into the
Holocene to be conclusive. Sedimentary oxygen levels are
relatively high during the last glacial period as well during
MIS6. In fact, sedimentary oxygen levels may peak during
peak glacial conditions, �135–140 ka and 20–25 ka. This
finding of higher oxygen conditions during glacial periods
contrasts with previous studies that have found evidence
for lower oxygen concentrations during glacial periods in
the Pacific (Jacobel et al., 2017; Korff et al., 2016; Mills
et al., 2010). However, there are three different processes
that can account for low sedimentary oxygen concentra-
tions: (1) bottom water oxygen (2) organic matter deposi-
tion and (3) sulfide deposition. In the next section, we will
explore the evidence for and against each of these as drivers
of the redox history of the sediment on the JdFR.

4.4. Mechanisms for changing sediment oxygen

concentrations over time

4.4.1. Bottom water oxygen concentrations

In modern Pacific overturning circulation, the northern-
most extent of North Pacific Deep Water (NPDW) blankets
the Juan de Fuca Ridge before it retroflects and travels
southward at depths of 2.5–3.5 km (e.g., Schmitz, Jr.,
1995; Macdonald et al., 2009). Last ventilated in the South-
regional mean (B) on the Juan de Fuca Ridge. RRPs are calculated
by its relative redox indication (Mn = 2, Ni = 1, Zn = �1, V = �1,
s by interpolating the excess metal fluxes onto the depths of the aU
r bins to generate the regional mean signal in B. Each 5kyr bin is
tive values indicate more oxygen rich conditions.



Fig. 9. Comparison of paleo-redox variability on the Juan de Fuca Ridge with other published redox records covering the last 250kyr in the
Pacific. All records are oriented such that up indicates more oxygen rich conditions. A. RRP for the Juan de Fuca Ridge, as in Fig. 8. B. RRP
for the East Pacific Rise, calculated as described in Section 4.3 using aU, Mnxs, and Vxa fluxes from GS7202-35 (light blue) (Mills et al., 2010)
and Y-71-7-53P (dark blue) (Lund et al., 2016; Schaller et al., 2000). Thick black line is the regional mean RRP of the two cores averaged
(mean) within 5kyr bins. C. aU from Central Equatorial Pacific, ML1208-17PC (Jacobel et al., 2017). Metal concentrations in this carbonate-
rich sediment core are too low to calculate RRPs. D. Anhysteretic remanent magnetization (ARM) from deep core SO202-1-39-3 (Korff et al.,
2016). Low ARM indicates magnetite dissolution as a result of reducing conditions. E. Manganese nodule growth rates from two sites in the
abyssal Pacific, 1550 m (light purple) and 4830 m (dark purple) (Mangini et al., 1990), normalized (zscore) to display on the same y-axis.
Nodule growth depends on the flux of MnO2, and so higher growth rates indicate periods of higher oxygen concentrations in the water
column. Discontinuation of nodule growth 160–190 ka at the deeper site indicates particularly low oxygen concentrations compared to the
shallower site during MIS6. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

K.M. Costa et al. /Geochimica et Cosmochimica Acta 236 (2018) 79–98 91
ern Ocean, this old and corrosive water mass has low oxy-
gen concentrations due to the cumulative effect of respira-
tion along its flowpath (Fig. 1) (Key et al., 2002;
Kroopnick, 1985). Multiple lines of evidence, including sed-
imentological laminations, foraminiferal assemblages, mag-
netite dissolution, manganese nodule growth, trace metal
deposition, and d15N diagenesis, have demonstrated that
oxygen concentrations in Pacific deep waters (>2 km) were
lower during the last glacial period (Fig. 9) (e.g.,
Bradtmiller et al., 2010; Galbraith et al., 2007; Galbraith
and Jaccard, 2015; Jaccard and Galbraith, 2012; Jacobel
et al., 2017; Korff et al., 2016; Mangini et al., 1990; Mills
et al., 2010; Sigman and Boyle, 2000, and references there
in). Glacial oxygen-depletion in deep waters was likely a
consequence of increased stratification in the Southern
Ocean (Anderson et al., 2009; Burke and Robinson, 2012;
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Francois et al., 1997; Sigman and Boyle, 2000) as well as
increased storage of respired carbon at depth (Anderson
et al., 2014; Bradtmiller et al., 2010; Jaccard et al., 2016,
2009; Jacobel et al., 2017; Martinez-Garcia et al., 2014;
Matsumoto et al., 2002). Therefore, any oxygen record cap-
turing changes in NPDW would be expected to show lower
oxygen concentrations during glacial periods.

The same would not necessarily be true for overlying
intermediate waters (1–2 km). During the last glacial per-
iod, the upper ocean generally experienced better ventila-
tion and higher oxygen concentrations than it does in
interglacial periods (e.g., Duplessy et al., 1988; Jaccard
and Galbraith, 2012; Poggemann et al., 2017; Sigman and
Boyle, 2000; Stott et al., 2000). In the North Pacific, this
water mass would be North Pacific Intermediate Water
(NPIW), formed today in the Okhotsk Sea through cabbel-
ing of the saline Kuroshio and the cold Oyashio current
(You, 2003), an extrapolation of dense Okhotsk Sea Mode
Water formed in the winter as a result of brine rejection
(Talley, 1993). NPIW can easily be identified as a salinity
minimum in the North Pacific (Keigwin, 1998), and this rel-
atively low density (r = 26.8) and steep halocline is what
prevents true deep water formation and restricts NPIW to
the upper water column (Emile-Geay et al., 2003; Warren,
1983). Oxygen concentrations in NPIW start out high near
the formation zone but they are expended almost entirely
en route to the California Margin (Bray, 1988). High inter-
mediate water oxygen concentrations recorded on the Cal-
ifornia Margin during the last glacial period (Keigwin and
Jones, 1990; Kennett and Ingram, 1995; Nameroff et al.,
2004; Stott et al., 2000) are therefore a good indication that
the NPIW, overall, was better ventilated.

Higher oxygen concentrations in NPIW could be gener-
ated if its glacial formation was more vigorous and/or more
voluminous, both of which would aid oxygen retention as
far east as the California Margin. Stronger NPIW forma-
tion has been modeled as a consequence of weakened
AMOC (Max et al., 2017; Menviel et al., 2017; Okazaki
et al., 2010), particularly during the last glacial termination.
For example, during Heinrich Stadial 1 (17.5 ka), a near
shutdown of AMOC (McManus et al., 2004) may have
caused a pulse of NPIW formation that could account for
transient ventilation peaks at that time (Mikolajewicz
et al., 1997; Okazaki et al., 2010; Rae et al., 2014). Expec-
tations for the production of NPIW during the glacial per-
iod itself would be much smaller, however, since the glacial-
interglacial difference in AMOC vigor is relatively small
compared to the changes during deglaciations (Böhm
et al., 2015; Gherardi et al., 2009; McManus et al., 2004).
Alternatively, enhanced NPIW formation during the glacial
period might be a result of closure of the Bering Strait and
new sources of NPIW formation in the Bering Sea
(Horikawa et al., 2010; Knudson and Ravelo, 2015; Max
et al., 2017).

Regardless of the mechanism driving NPIW formation,
proxy evidence for the glacial expansion of a younger, bet-
ter ventilated, lower nutrient water mass at intermediate
water depths has been found not just near California but
also elsewhere in the North Pacific. Glacial oxygenation is
fairly well documented above 1.5 km (Jaccard and
Galbraith, 2012), but the influence of NPIW below 2 km
is still debated. Some proxy records propose that NPIW
could not have penetrated below 2 km (Herguera et al.,
2010; Keigwin, 1998; Matsumoto et al., 2002; Stott et al.,
2000), while others have interpreted glacial NPIW signa-
tures at 2.4 km depth (Gorbarenko, 1996), 2.6 km depth
(Duplessy et al., 1988), and even 3.6 km during the
deglaciation (Rae et al., 2014). Models have suggested that
NPIW export may peak at 1.4 km (Menviel et al., 2017) but
during deglaciation it may reach 2 km (Menviel et al., 2017)
or 2.7 km (Okazaki et al., 2010). Similar patterns of man-
ganese nodule growth at 1.55 km and 4.83 km water depth
(Mangini et al., 1990) indicate similar changes in oxygen
concentrations throughout the water column, and they sug-
gest that any NPIW influence is limited to just the upper
1.5 km. As yet there is little proxy evidence or model simu-
lations to support glacial NPIW reaching depths of 2.6–2.8
km, the depths of the Juan de Fuca Ridge cores, although
data from this region are altogether sparse (Jaccard and
Galbraith, 2012, see their Fig. 2). Glacial ventilation by
NPIW would be consistent with increased oxygen concen-
trations reconstructed on the Juan de Fuca ridge in this
study, but future work generating transects of ventilation
from 2 to 3 km depth would be required to provide better
constraints on the lower depth-limit of NPIW influence in
the glacial North Pacific.

4.4.2. Organic matter delivery to the sediment

Organic matter is one of the strongest reducing agents
available in the ocean. The aerobic respiration of organic
matter can rapidly consume oxygen levels to the point of
generating suboxic conditions and aU precipitation within
the surface sediments (Anderson, 1982). Remineralization
below high productivity regions can create oxygen deficient
zones in the underlying water column (Key et al., 2002),
and high fluxes of organic matter to the sediment can drive
oxygen deficiency down into the sedimentary record. The
extensive productivity peak during the Bolling-Allerod
(�15 ka) in the North Pacific (Kohfeld and Chase, 2011)
created locally hypoxic conditions observed in aU peaks
(Lam et al., 2013), benthic foraminiferal assemblages
(Praetorius et al., 2015), and sediment laminations
(Davies et al., 2011). Besides this deglacial productivity
peak, much of the North Pacific is characterized by lower
productivity during glacial than during interglacial periods
(e.g., Jaccard et al., 2005; Galbraith et al., 2007; Kohfeld
and Chase, 2011). Biological growth during glacial periods
may have been inhibited by both light limitation and pre-
vention of upward mixing of deep nutrients due to
enhanced surface stratification (Brunelle et al., 2010, 2007;
Kienast et al., 2004; Ren et al., 2015; Sigman et al., 2004).
If productivity was low during glacial periods and high dur-
ing interglacial periods on the Juan de Fuca Ridge, then the
cycles in organic fluxes to the sediment could generate the
observed variability in RRP.

However, the three productivity proxies measured in this
study each reconstructs a different productivity history,
none of which would be consistent with the calculated
RRP (Fig. 6). To attribute the reducing conditions in
MIS5 to organic carbon fluxes, a particularly high flux of
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organic carbon throughout the interglacial period would be
expected. Instead, the organic carbon, opal, and Baxs fluxes
record only transient features that suggest high productivity
peaks during late deglaciation and early interglacial condi-
tions. Other features in the productivity records, like the
�25 kyr cycles in organic carbon fluxes or the broad peak
�75 ka in Baxs fluxes, do not translate into similar features
in the RRP. Overall, there appears to be very little evidence
to definitively link the RRP to variability in organic matter.

Admittedly, this conclusion is dependent on taking the
paleo-productivity proxies at face value, while the disagree-
ment between them may instead indicate that they are
imperfect records. The generally corrosive bottom waters
combined with hydrothermal alteration of water column
and sediment properties may create an environment simul-
taneously but variably harmful to the preservation of
organic matter, opal, and Baxs. The nearly exponential
decay in opal flux from the most recent period (0–20 ka,
22 mg/cm2 kyr) to the oldest part of the record (200–250
ka, 5.3 mg/cm2 kyr) suggests that opal, rather than being
more robust than organic carbon to diagenesis, is in fact
much more susceptible to post-depositional redissolution.
Barite (BaSO4) may be sensitive to changes in oxygen con-
centrations, in that intensive sulfate-reducing conditions,
with substantial depletion of dissolved sulfate in pore
waters, would reduce the preservation of Baxs and its utility
as a productivity proxy (Torres et al., 1996; van Os et al.,
1991). Within these limitations, however, there does not
appear to be any conclusive evidence indicating that fluxes
of organic matter have had a large influence on redox con-
ditions. Future work using paleo-productivity proxies that
are less susceptible to preservation issues, like Pa/Th, may
help to provide more robust support for this conclusion.

4.4.3. Sulfide deposition due to hydrothermal activity

Instead of organic matter, another source of electron
donors near mid-ocean ridges may be hydrothermal sulfides
(Mills et al., 2010). Sediments near hydrothermal vents
often contain concentrated aU deposits (>10 ppm) (Mills
et al., 1993, 1994; Mills and Dunk, 2010; Schaller et al.,
2000; Shimmield and Price, 1988) that have been ascribed
to (1) deposition and subsequent oxidation of hydrothermal
sulfides and/or (2) scavenging of U from seawater by set-
tling hydrothermal particles. Elevated U/Fe ratios (�4
ppm/wt%) have been observed in suspended particles up
to 200 m from the hydrothermal vents on the EPR
(German et al., 2002) but they rapidly decline to negligible
U enrichment (U/Fe � 0.02 ppm/wt%) by 1.2 km from the
ridge (Edmonds and German, 2004; German et al., 1991).
Thus scavenging of U from seawater is not likely to be an
important U delivery mechanism to sediment on the ridge
flanks (e.g., >10 km from the ridge), and elevated U con-
centrations in sedimentary records (Metz et al., 1988;
Mills et al., 1994; Sani et al., 2004; Shimmield and Price,
1988) must be generated by some in-situ process. Oxidation
of sulfide minerals to soluble sulfates may be coupled to
uranium reduction, in which U(VI) acts as the electron
acceptor (Klinkhammer and Palmer, 1991; Langmuir,
1978; Wersin et al., 1994). Alternatively, oxidation of sul-
fide minerals may rapidly consume existing oxygen such
that the benthic microbial assemblage shifts towards anaer-
obic microbes, including those that reduce uranium (see
Section 4.1), so that sulfide oxidation and uranium reduc-
tion occur in rapid succession rather than coincidentally.
The possible coupling between U and sulfide would pro-
duce a causal relationship between increased hydrothermal
activity and more reducing conditions in the sediment.

Extensive study of hydrothermal deposits on the East
Pacific Rise supports the hypothesis that the supply of
hydrothermal sulfides is a major control on redox condi-
tions in the sediment (Dunk and Mills, 2006; Mills et al.,
2010; Mills and Dunk, 2010). If this is also the case on
the Juan de Fuca Ridge, then interglacial reducing condi-
tions may be a result of relatively higher hydrothermal
activity at that time. Reconstructions based on hydrother-
mal Fe fluxes indicate high overall hydrothermal deposition
during the last interglacial period, with two elevated peaks
at 83 ka and 129 ka (Costa et al., 2017c). This pattern is
broadly consistent with the RRP showing lower sedimen-
tary oxygen concentrations during the last interglacial per-
iod (Fig. 8). Although the RRP does not capture the
millennial scale peaks in hydrothermal activity, this may
be an artifact of the RRP compilation that smooths the
records over 5kyr bins. Alternatively, sulfides supplied
intermittently by hydrothermal plumes may drive reducing
conditions in the sediments over much longer sustained
periods, especially when bioturbation rates are high. The
influence of sulfides on the RRP is further corroborated
by high Znxs fluxes during the last interglacial period, since
the main carrier phase of Zn is indeed sulfides (Sec-
tion 4.4.3). Redox reactions proceed slowly, so a small frac-
tion of sulfides may oxidize and trigger aU precipitation
while a large fraction of sulfides (e.g., Zn-sulfides) remain
unreacted. If sulfide deposition is indeed an important influ-
ence on redox conditions, then it may imply that metal
depositional environments are the most reducing at the
same time that metal inputs from hydrothermal activity
are the highest. This conjunction could have the potential
effect of moderating metal burial such that hydrothermal
deposition reconstructed from redox-sensitive metals may
be underestimated.

5. CONCLUSIONS

Sedimentary concentrations of trace metals (Mn, Ni, Zn,
V) and authigenic U (aU) were used to reconstruct redox
conditions over the past 250 ka on the Juan de Fuca Ridge.
Mn and Ni are indicators for high sedimentary oxygen con-
centrations, while Zn, V, and aU are indicators for low sed-
imentary oxygen concentrations. In contrast to previous
studies from across the North Pacific at other depths and
locations, sediment redox conditions were relatively oxygen
rich on the Juan de Fuca Ridge during glacial periods com-
pared to interglacial periods. We do not find strong evi-
dence to attribute the low sediment oxygen conditions to
an enhanced local organic carbon flux to the sediments dur-
ing interglacial periods, although each of the three paleo-
productivity proxies may be compromised by poor preser-
vation. Alternatively, higher oxygen concentrations on the
Juan de Fuca Ridge may result from better ventilation dur-
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ing glacial periods, possibly due to enhanced North Pacific
Intermediate Water (NPIW) formation, although there is as
yet little evidence that NPIW can penetrate so deep in the
water column. Finally, increased delivery and oxidation
of hydrothermal sulfides from the nearby ridge may have
created locally low sedimentary oxygen conditions during
interglacial periods as a result of enhanced hydrothermal
activity. If sulfides are indeed the dominant influence on
the sediment redox reconstruction on the Juan de Fuca
Ridge, then changes in sedimentary oxygen concentrations
will be independent of any changes that may be occurring in
bottom water oxygen concentrations.
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